The search session has expired. Please query the service again.
Let be a nontrivial connected graph on which is defined a coloring , , of the edges of , where adjacent edges may be colored the same. A path in is a rainbow path if no two edges of are colored the same. The graph is rainbow-connected if contains a rainbow path for every two vertices and of . The minimum for which there exists such a -edge coloring is the rainbow connection number of . If for every pair of distinct vertices, contains a rainbow geodesic, then is...
An edge-colored graph G is rainbow connected, if any two vertices are connected by a path whose edges have distinct colors. The rainbow connection number of a connected graph G, denoted rc(G), is the smallest number of colors that are needed in order to make G rainbow connected. In this paper we show that rc(G) ≤ 3 if |E(G)| ≥ [...] + 2, and rc(G) ≤ 4 if |E(G)| ≥ [...] + 3. These bounds are sharp.
A path in an edge-colored graph G is rainbow if no two edges of the path are colored the same. The rainbow connection number rc(G) of G is the smallest integer k for which there exists a k-edge-coloring of G such that every pair of distinct vertices of G is connected by a rainbow path. Let f(d) denote the minimum number such that rc(G) ≤ f(d) for each bridgeless graph G with diameter d. In this paper, we shall show that 7 ≤ f(3) ≤ 9.
An arc-coloured digraph D = (V,A) is said to be rainbow connected if for every pair {u, v} ⊆ V there is a directed uv-path all whose arcs have different colours and a directed vu-path all whose arcs have different colours. The minimum number of colours required to make the digraph D rainbow connected is called the rainbow connection number of D, denoted rc⃗ (D). A cactus is a digraph where each arc belongs to exactly one directed cycle. In this paper we give sharp upper and lower bounds for the...
Currently displaying 1 –
5 of
5