The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1 Next

Displaying 1 – 20 of 455

Showing per page

1-factors and characterization of reducible faces of plane elementary bipartite graphs

Andrej Taranenko, Aleksander Vesel (2012)

Discussiones Mathematicae Graph Theory

As a general case of molecular graphs of benzenoid hydrocarbons, we study plane bipartite graphs with Kekulé structures (1-factors). A bipartite graph G is called elementary if G is connected and every edge belongs to a 1-factor of G. Some properties of the minimal and the maximal 1-factor of a plane elementary graph are given. A peripheral face f of a plane elementary graph is reducible, if the removal of the internal vertices and edges of the path that is the intersection of...

2-halvable complete 4-partite graphs

Dalibor Fronček (1998)

Discussiones Mathematicae Graph Theory

A complete 4-partite graph K m , m , m , m is called d-halvable if it can be decomposed into two isomorphic factors of diameter d. In the class of graphs K m , m , m , m with at most one odd part all d-halvable graphs are known. In the class of biregular graphs K m , m , m , m with four odd parts (i.e., the graphs K m , m , m , n and K m , m , n , n ) all d-halvable graphs are known as well, except for the graphs K m , m , n , n when d = 2 and n ≠ m. We prove that such graphs are 2-halvable iff n,m ≥ 3. We also determine a new class of non-halvable graphs K m , m , m , m with three or four different...

A Finite Characterization and Recognition of Intersection Graphs of Hypergraphs with Rank at Most 3 and Multiplicity at Most 2 in the Class of Threshold Graphs

Yury Metelsky, Kseniya Schemeleva, Frank Werner (2017)

Discussiones Mathematicae Graph Theory

We characterize the class [...] L32 L 3 2 of intersection graphs of hypergraphs with rank at most 3 and multiplicity at most 2 by means of a finite list of forbidden induced subgraphs in the class of threshold graphs. We also give an O(n)-time algorithm for the recognition of graphs from [...] L32 L 3 2 in the class of threshold graphs, where n is the number of vertices of a tested graph.

A Havel-Hakimi type procedure and a sufficient condition for a sequence to be potentially S r , s -graphic

Jian Hua Yin (2012)

Czechoslovak Mathematical Journal

The split graph K r + K s ¯ on r + s vertices is denoted by S r , s . A non-increasing sequence π = ( d 1 , d 2 , ... , d n ) of nonnegative integers is said to be potentially S r , s -graphic if there exists a realization of π containing S r , s as a subgraph. In this paper, we obtain a Havel-Hakimi type procedure and a simple sufficient condition for π to be potentially S r , s -graphic. They are extensions of two theorems due to A. R. Rao (The clique number of a graph with given degree sequence, Graph Theory, Proc. Symp., Calcutta 1976, ISI Lect. Notes Series...

A lower bound for the 3-pendant tree-connectivity of lexicographic product graphs

Yaping Mao, Christopher Melekian, Eddie Cheng (2023)

Czechoslovak Mathematical Journal

For a connected graph G = ( V , E ) and a set S V ( G ) with at least two vertices, an S -Steiner tree is a subgraph T = ( V ' , E ' ) of G that is a tree with S V ' . If the degree of each vertex of S in T is equal to 1, then T is called a pendant S -Steiner tree. Two S -Steiner trees are internally disjoint if they share no vertices other than S and have no edges in common. For S V ( G ) and | S | 2 , the pendant tree-connectivity τ G ( S ) is the maximum number of internally disjoint pendant S -Steiner trees in G , and for k 2 , the k -pendant tree-connectivity τ k ( G ) ...

A lower bound for the packing chromatic number of the Cartesian product of cycles

Yolandé Jacobs, Elizabeth Jonck, Ernst Joubert (2013)

Open Mathematics

Let G = (V, E) be a simple graph of order n and i be an integer with i ≥ 1. The set X i ⊆ V(G) is called an i-packing if each two distinct vertices in X i are more than i apart. A packing colouring of G is a partition X = {X 1, X 2, …, X k} of V(G) such that each colour class X i is an i-packing. The minimum order k of a packing colouring is called the packing chromatic number of G, denoted by χρ(G). In this paper we show, using a theoretical proof, that if q = 4t, for some integer t ≥ 3, then 9...

A Maximum Resonant Set of Polyomino Graphs

Heping Zhang, Xiangqian Zhou (2016)

Discussiones Mathematicae Graph Theory

A polyomino graph P is a connected finite subgraph of the infinite plane grid such that each finite face is surrounded by a regular square of side length one and each edge belongs to at least one square. A dimer covering of P corresponds to a perfect matching. Different dimer coverings can interact via an alternating cycle (or square) with respect to them. A set of disjoint squares of P is a resonant set if P has a perfect matching M so that each one of those squares is M-alternating. In this paper,...

A Neighborhood Condition for Fractional ID-[A, B]-Factor-Critical Graphs

Sizhong Zhou, Fan Yang, Zhiren Sun (2016)

Discussiones Mathematicae Graph Theory

Let G be a graph of order n, and let a and b be two integers with 1 ≤ a ≤ b. Let h : E(G) → [0, 1] be a function. If a ≤ ∑e∋x h(e) ≤ b holds for any x ∈ V (G), then we call G[Fh] a fractional [a, b]-factor of G with indicator function h, where Fh = {e ∈ E(G) : h(e) > 0}. A graph G is fractional independent-set-deletable [a, b]-factor-critical (in short, fractional ID-[a, b]- factor-critical) if G − I has a fractional [a, b]-factor for every independent set I of G. In this paper, it is proved...

Currently displaying 1 – 20 of 455

Page 1 Next