The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 9 of 9

Showing per page

Backbone colorings along stars and matchings in split graphs: their span is close to the chromatic number

Hajo Broersma, Bert Marchal, Daniel Paulusma, A.N.M. Salman (2009)

Discussiones Mathematicae Graph Theory

We continue the study on backbone colorings, a variation on classical vertex colorings that was introduced at WG2003. Given a graph G = (V,E) and a spanning subgraph H of G (the backbone of G), a λ-backbone coloring for G and H is a proper vertex coloring V→ {1,2,...} of G in which the colors assigned to adjacent vertices in H differ by at least λ. The algorithmic and combinatorial properties of backbone colorings have been studied for various types of backbones in a number of papers. The main outcome...

Balanced problems on graphs with categorization of edges

Štefan Berežný, Vladimír Lacko (2003)

Discussiones Mathematicae Graph Theory

Suppose a graph G = (V,E) with edge weights w(e) and edges partitioned into disjoint categories S₁,...,Sₚ is given. We consider optimization problems on G defined by a family of feasible sets (G) and the following objective function: L ( D ) = m a x 1 i p ( m a x e S i D w ( e ) - m i n e S i D w ( e ) ) For an arbitrary number of categories we show that the L₅-perfect matching, L₅-a-b path, L₅-spanning tree problems and L₅-Hamilton cycle (on a Halin graph) problem are NP-complete. We also summarize polynomiality results concerning above objective functions for arbitrary...

Block decomposition approach to compute a minimum geodetic set

Tınaz Ekim, Aysel Erey (2014)

RAIRO - Operations Research - Recherche Opérationnelle

In this paper, we develop a divide-and-conquer approach, called block decomposition, to solve the minimum geodetic set problem. This provides us with a unified approach for all graphs admitting blocks for which the problem of finding a minimum geodetic set containing a given set of vertices (g-extension problem) can be efficiently solved. Our method allows us to derive linear time algorithms for the minimum geodetic set problem in (a proper superclass of) block-cacti and monopolar chordal graphs....

Bootstrap clustering for graph partitioning

Philippe Gambette, Alain Guénoche (2011)

RAIRO - Operations Research - Recherche Opérationnelle

Given a simple undirected weighted or unweighted graph, we try to cluster the vertex set into communities and also to quantify the robustness of these clusters. For that task, we propose a new method, called bootstrap clustering which consists in (i) defining a new clustering algorithm for graphs, (ii) building a set of graphs similar to the initial one, (iii) applying the clustering method to each of them, making a profile (set) of partitions, (iv) computing a consensus partition for this profile,...

Bootstrap clustering for graph partitioning∗

Philippe Gambette, Alain Guénoche (2012)

RAIRO - Operations Research

Given a simple undirected weighted or unweighted graph, we try to cluster the vertex set into communities and also to quantify the robustness of these clusters. For that task, we propose a new method, called bootstrap clustering which consists in (i) defining a new clustering algorithm for graphs, (ii) building a set of graphs similar to the initial one, (iii) applying the clustering method to each of them, making a profile (set) of partitions, (iv) computing a consensus partition for this profile,...

Bounds of graph parameters for global constraints

Nicolas Beldiceanu, Thierry Petit, Guillaume Rochart (2006)

RAIRO - Operations Research - Recherche Opérationnelle

This article presents a basic scheme for deriving systematically a filtering algorithm from the graph properties based representation of global constraints. This scheme is based on the bounds of the graph parameters used in the description of a global constraint. The article provides bounds for the most common used graph parameters.

Bounds of graph parameters for global constraints

Nicolas Beldiceanu, Thierry Petit, Guillaume Rochart (2007)

RAIRO - Operations Research

This article presents a basic scheme for deriving systematically a filtering algorithm from the graph properties based representation of global constraints. This scheme is based on the bounds of the graph parameters used in the description of a global constraint. The article provides bounds for the most common used graph parameters.

Currently displaying 1 – 9 of 9

Page 1