Displaying 661 – 680 of 3879

Showing per page

Congruence kernels of distributive PJP-semilattices

S. N. Begum, Abu Saleh Abdun Noor (2011)

Mathematica Bohemica

A meet semilattice with a partial join operation satisfying certain axioms is a JP-semilattice. A PJP-semilattice is a pseudocomplemented JP-semilattice. In this paper we describe the smallest PJP-congruence containing a kernel ideal as a class. Also we describe the largest PJP-congruence containing a filter as a class. Then we give several characterizations of congruence kernels and cokernels for distributive PJP-semilattices.

Congruence lattices in varieties with compact intersection property

Filip Krajník, Miroslav Ploščica (2014)

Czechoslovak Mathematical Journal

We say that a variety 𝒱 of algebras has the Compact Intersection Property (CIP), if the family of compact congruences of every A 𝒱 is closed under intersection. We investigate the congruence lattices of algebras in locally finite, congruence-distributive CIP varieties and obtain a complete characterization for several types of such varieties. It turns out that our description only depends on subdirectly irreducible algebras in 𝒱 and embeddings between them. We believe that the strategy used here can...

Congruence lattices of intransitive G-Sets and flat M-Sets

Steve Seif (2013)

Commentationes Mathematicae Universitatis Carolinae

An M-Set is a unary algebra X , M whose set M of operations is a monoid of transformations of X ; X , M is a G-Set if M is a group. A lattice L is said to be represented by an M-Set X , M if the congruence lattice of X , M is isomorphic to L . Given an algebraic lattice L , an invariant Π ( L ) is introduced here. Π ( L ) provides substantial information about properties common to all representations of L by intransitive G-Sets. Π ( L ) is a sublattice of L (possibly isomorphic to the trivial lattice), a Π -product lattice. A Π -product...

Congruence schemes and their applications

Ivan Chajda, Sándor Radelecki (2005)

Commentationes Mathematicae Universitatis Carolinae

Using congruence schemes we formulate new characterizations of congruence distributive, arithmetical and majority algebras. We prove new properties of the tolerance lattice and of the lattice of compatible reflexive relations of a majority algebra and generalize earlier results of H.-J. Bandelt, G. Cz'{e}dli and the present authors. Algebras whose congruence lattices satisfy certain 0-conditions are also studied.

Congruences and homomorphisms on Ω -algebras

Elijah Eghosa Edeghagba, Branimir Šešelja, Andreja Tepavčević (2017)

Kybernetika

The topic of the paper are Ω -algebras, where Ω is a complete lattice. In this research we deal with congruences and homomorphisms. An Ω -algebra is a classical algebra which is not assumed to satisfy particular identities and it is equipped with an Ω -valued equality instead of the ordinary one. Identities are satisfied as lattice theoretic formulas. We introduce Ω -valued congruences, corresponding quotient Ω -algebras and Ω -homomorphisms and we investigate connections among these notions. We prove...

Congruences and ideals in lattice effect algebras as basic algebras

Sylvia Pulmannová, Elena Vinceková (2009)

Kybernetika

Effect basic algebras (which correspond to lattice ordered effect algebras) are studied. Their ideals are characterized (in the language of basic algebras) and one-to-one correspondence between ideals and congruences is shown. Conditions under which the quotients are OMLs or MV-algebras are found.

Currently displaying 661 – 680 of 3879