The order of generalized hypersubstitutions of type .
In this paper it is proved that there does not exist a function for the language of positive and generalized conditional terms that behaves the same as the discriminator for the language of conditional terms.
A method is presented for proving primality and functional completeness theorems, which makes use of the operation-relation duality. By the result of Sierpiński, we have to investigate relations generated by the two-element subsets of only. We show how the method applies for proving Słupecki’s classical theorem by generating diagonal relations from each pair of k-tuples.
For each clone C on a set A there is an associated equivalence relation analogous to Green's R-relation, which relates two operations on A if and only if each one is a substitution instance of the other using operations from C. We study the maximal and submaximal clones on a three-element set and determine which of them have only finitely many relative R-classes.
The aim of this paper is to describe how varieties of algebras of type τ can be classified by using the form of the terms which build the (defining) identities of the variety. There are several possibilities to do so. In [3], [19], [15] normal identities were considered, i.e. identities which have the form x ≈ x or s ≈ t, where s and t contain at least one operation symbol. This was generalized in [14] to k-normal identities and in [4] to P-compatible identities. More generally, we select a subset...
A characterization of all classes of idempotent groupoids having no more than two essentially binary term operations with respect to small finite models is given.
We give an equational description of all idempotent groupoids with at most three essentially n-ary term operations.