Displaying 181 – 200 of 1526

Showing per page

Signed bits and fast exponentiation

Wieb Bosma (2001)

Journal de théorie des nombres de Bordeaux

An exact analysis is given of the benefits of using the non-adjacent form representation for integers (rather than the binary representation), when computing powers of elements in a group in which inverting is easy. By counting the number of multiplications for a random exponent requiring a given number of bits in its binary representation, we arrive at a precise version of the known asymptotic result that on average one in three signed bits in the non-adjacent form is non-zero. This shows that...

Signed Selmer groups over p -adic Lie extensions

Antonio Lei, Sarah Livia Zerbes (2012)

Journal de Théorie des Nombres de Bordeaux

Let E be an elliptic curve over with good supersingular reduction at a prime p 3 and a p = 0 . We generalise the definition of Kobayashi’s plus/minus Selmer groups over ( μ p ) to p -adic Lie extensions K of containing ( μ p ) , using the theory of ( ϕ , Γ ) -modules and Berger’s comparison isomorphisms. We show that these Selmer groups can be equally described using Kobayashi’s conditions via the theory of overconvergent power series. Moreover, we show that such an approach gives the usual Selmer groups in the ordinary case....

Similitude des multiples des formes d’Albert en caractéristique 2

Detlev W. Hoffmann, Ahmed Laghribi (2013)

Bulletin de la Société Mathématique de France

Étant donnés F un corps commutatif de caractéristique 2 , γ 1 , γ 2 des formes bilinéaires d’Albert et π 1 , π 2 des k -formes quadratiques de Pfister, ou γ 1 , γ 2 des k -formes bilinéaires de Pfister et π 1 , π 2 des formes quadratiques d’Albert (resp. γ 1 , γ 2 des formes bilinéaires d’Albert et π 1 , π 2 des k -formes bilinéaires de Pfister avec la condition que γ i π i , i = 1 , 2 , soient anisotropes), alors on montre que γ 1 π 1 γ 2 π 2 I q k + 3 F (resp. I k + 3 F ) si et seulement si γ 1 π 1 est semblable à γ 2 π 2 . Un exemple montre que la condition de l’anisotropie est nécessaire dans le cas bilinéaire....

Simple proofs of some generalizations of the Wilson’s theorem

Jan Górowski, Adam Łomnicki (2014)

Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica

In this paper a remarkable simple proof of the Gauss’s generalization of the Wilson’s theorem is given. The proof is based on properties of a subgroup generated by element of order 2 of a finite abelian group. Some conditions equivalent to the cyclicity of (Φ(n), ·n), where n > 2 is an integer are presented, in particular, a condition for the existence of the unique element of order 2 in such a group.

Simple proofs of the Siegel-Tatuzawa and Brauer-Siegel theorems

Stéphane R. Louboutin (2007)

Colloquium Mathematicae

We give a simple proof of the Siegel-Tatuzawa theorem according to which the residues at s = 1 of the Dedekind zeta functions of quadratic number fields are effectively not too small, with at most one exceptional quadratic field. We then give a simple proof of the Brauer-Siegel theorem for normal number fields which gives the asymptotics for the logarithm of the product of the class number and the regulator of number fields.

Simple zeros of degree 2 L -functions

Andrew R. Booker (2016)

Journal of the European Mathematical Society

We prove that the complete L -functions of classical holomorphic newforms have infinitely many simple zeros.

Currently displaying 181 – 200 of 1526