Displaying 1981 – 2000 of 16591

Showing per page

Average order in cyclic groups

Joachim von zur Gathen, Arnold Knopfmacher, Florian Luca, Lutz G. Lucht, Igor E. Shparlinski (2004)

Journal de Théorie des Nombres de Bordeaux

For each natural number n we determine the average order α ( n ) of the elements in a cyclic group of order n . We show that more than half of the contribution to α ( n ) comes from the ϕ ( n ) primitive elements of order n . It is therefore of interest to study also the function β ( n ) = α ( n ) / ϕ ( n ) . We determine the mean behavior of α , β , 1 / β , and also consider these functions in the multiplicative groups of finite fields.

Average r-rank Artin conjecture

Lorenzo Menici, Cihan Pehlivan (2016)

Acta Arithmetica

Let Γ ⊂ ℚ * be a finitely generated subgroup and let p be a prime such that the reduction group Γₚ is a well defined subgroup of the multiplicative group ₚ*. We prove an asymptotic formula for the average of the number of primes p ≤ x for which [ₚ*:Γₚ] = m. The average is taken over all finitely generated subgroups Γ = a , . . . , a r * , with a i and a i T i , with a range of uniformity T i > e x p ( 4 ( l o g x l o g l o g x ) 1 / 2 ) for every i = 1,...,r. We also prove an asymptotic formula for the mean square of the error terms in the asymptotic formula with a similar...

Average Value of the Euler Function on Binary Palindromes

William D. Banks, Igor E. Shparlinski (2006)

Bulletin of the Polish Academy of Sciences. Mathematics

We study values of the Euler function φ(n) taken on binary palindromes of even length. In particular, if 2 denotes the set of binary palindromes with precisely 2ℓ binary digits, we derive an asymptotic formula for the average value of the Euler function on 2 .

B dR -représentations dans le cas relatif

Fabrizio Andreatta, Olivier Brinon (2010)

Annales scientifiques de l'École Normale Supérieure

Dans ce travail nous développons un analogue relatif de la théorie de Sen pour les B dR -représentations. On donne des applications à la théorie des représentations p -adiques, en la reliant à la théorie des ( ϕ , Γ ) -modules relatifs, et à celle des modules de Higgs p -adiques développée par G. Faltings.

Badly approximable systems of linear forms over a field of formal series

Simon Kristensen (2006)

Journal de Théorie des Nombres de Bordeaux

We prove that the Hausdorff dimension of the set of badly approximable systems of m linear forms in n variables over the field of Laurent series with coefficients from a finite field is maximal. This is an analogue of Schmidt’s multi-dimensional generalisation of Jarník’s Theorem on badly approximable numbers.

Currently displaying 1981 – 2000 of 16591