Displaying 2081 – 2100 of 16555

Showing per page

Bernstein polynomials and spectral numbers for linear free divisors

Christian Sevenheck (2011)

Annales de l’institut Fourier

We discuss Bernstein polynomials of reductive linear free divisors. We define suitable Brieskorn lattices for these non-isolated singularities, and show the analogue of Malgrange’s result relating the roots of the Bernstein polynomial to the residue eigenvalues on the saturation of these Brieskorn lattices.

Besicovitch subsets of self-similar sets

Ji-Hua Ma, Zhi-Ying Wen, Jun Wu (2002)

Annales de l’institut Fourier

Let E be a self-similar set with similarities ratio r j ( 0 j m - 1 ) and Hausdorff dimension s , let p ( p 0 , p 1 ) ... p m - 1 be a probability vector. The Besicovitch-type subset of E is defined as E ( p ) = x E : lim n 1 n k = 1 n χ j ( x k ) = p j , 0 j m - 1 , where χ j is the indicator function of the set { j } . Let α = dim H ( E ( p ) ) = dim P ( E ( p ) ) = j = 0 m - 1 p j log p j j = 0 m - 1 p i log r j and g be a gauge function, then we prove in this paper:(i) If p = ( r 0 s , r 1 s , , r m - 1 s ) , then s ( E ( p ) ) = s ( E ) , 𝒫 s ( E ( p ) ) = 𝒫 s ( E ) , moreover both of s ( E ) and 𝒫 s ( E ) are finite positive;(ii) If p is a positive probability vector other than ( r 0 s , r 1 s , , r m - 1 s ) , then the gauge functions can be partitioned as follows g ( E ( p ) ) = + lim ¯ t 0 log g ( t ) log t α ; g ( E ( p ) ) = 0 lim ¯ t 0 log g ( t ) log t > α , ...

Best simultaneous diophantine approximations of some cubic algebraic numbers

Nicolas Chevallier (2002)

Journal de théorie des nombres de Bordeaux

Let α be a real algebraic number of degree 3 over whose conjugates are not real. There exists an unit ζ of the ring of integer of K = ( α ) for which it is possible to describe the set of all best approximation vectors of θ = ( ζ , ζ 2 ) .’

Beta expansion of Salem numbers approaching Pisot numbers with the finiteness property

Hachem Hichri (2015)

Acta Arithmetica

It is already known that all Pisot numbers are beta numbers, but for Salem numbers this was proved just for the degree 4 case. In 1945, R. Salem showed that for any Pisot number θ we can construct a sequence of Salem numbers which converge to θ. In this short note, we give some results on the beta expansion for infinitely many sequences of Salem numbers obtained by this construction.

Currently displaying 2081 – 2100 of 16555