Displaying 2161 – 2180 of 3028

Showing per page

On the irrationality measure of ζ ( 2 )

Georges Rhin, Carlo Viola (1993)

Annales de l'institut Fourier

We prove that 7. 398 537 is an irrationality measure of ζ ( 2 ) = π 2 / 6 . We employ double integrals of suitable rational functions invariant under a group of birational transformations of 2 . The numerical results are obtained with the aid of a semi-infinite linear programming method.

On the irreducibility of 0,1-polynomials of the form f(x)xⁿ + g(x)

Michael Filaseta, Manton Matthews, Jr. (2004)

Colloquium Mathematicae

If f(x) and g(x) are relatively prime polynomials in ℤ[x] satisfying certain conditions arising from a theorem of Capelli and if n is an integer > N for some sufficiently large N, then the non-reciprocal part of f(x)xⁿ + g(x) is either identically ±1 or is irreducible over the rationals. This result follows from work of Schinzel in 1965. We show here that under the conditions that f(x) and g(x) are relatively prime 0,1-polynomials (so each coefficient is either 0 or 1) and f(0) = g(0) = 1, one...

On the irreducible factors of a polynomial over a valued field

Anuj Jakhar (2024)

Czechoslovak Mathematical Journal

We explicitly provide numbers d , e such that each irreducible factor of a polynomial f ( x ) with integer coefficients has a degree greater than or equal to d and f ( x ) can have at most e irreducible factors over the field of rational numbers. Moreover, we prove our result in a more general setup for polynomials with coefficients from the valuation ring of an arbitrary valued field.

Currently displaying 2161 – 2180 of 3028