On the product of the conjugates outside the unit circle of an algebraic number
We examine the -Pell sequences and their applications to weighted partition theorems and values of -functions. We also put them into perspective with sums of tails. It is shown that there is a deeper structure between two-variable generalizations of Rogers-Ramanujan identities and sums of tails, by offering examples of an operator equation considered in a paper published by the present author. The paper starts with the classical example offered by Ramanujan and studied by previous authors noted...
Let ℤ be the set of integers, and let (m,n) be the greatest common divisor of integers m and n. Let p be a prime of the form 4k+1 and p = c²+d² with c,d ∈ ℤ, and c ≡ d₀ ≡ 1 (mod 4). In the paper we determine for p = x²+(b²+4α)y² (b,x,y ∈ ℤ, 2∤b), and for p = x²+(4a²+1)y² (a,x,y∈ℤ) on the condition that (c,x+d) = 1 or (d₀,x+c) = 1. As applications we obtain the congruence for and the criterion for (if p ≡ 1 (mod 8)), where Uₙ is the Lucas sequence given by U₀ = 0, U₁ = 1 and , and b ≢...
We study a family of quasi periodic -adic Ruban continued fractions in the -adic field and we give a criterion of a quadratic or transcendental -adic number which based on the -adic version of the subspace theorem due to Schlickewei.