Displaying 2561 – 2580 of 3028

Showing per page

On the r -free values of the polynomial x 2 + y 2 + z 2 + k

Gongrui Chen, Wenxiao Wang (2023)

Czechoslovak Mathematical Journal

Let k be a fixed integer. We study the asymptotic formula of R ( H , r , k ) , which is the number of positive integer solutions 1 x , y , z H such that the polynomial x 2 + y 2 + z 2 + k is r -free. We obtained the asymptotic formula of R ( H , r , k ) for all r 2 . Our result is new even in the case r = 2 . We proved that R ( H , 2 , k ) = c k H 3 + O ( H 9 / 4 + ε ) , where c k > 0 is a constant depending on k . This improves upon the error term O ( H 7 / 3 + ε ) obtained by G.-L. Zhou, Y. Ding (2022).

On the range of Carmichael's universal-exponent function

Florian Luca, Carl Pomerance (2014)

Acta Arithmetica

Let λ denote Carmichael’s function, so λ(n) is the universal exponent for the multiplicative group modulo n. It is closely related to Euler’s φ-function, but we show here that the image of λ is much denser than the image of φ. In particular the number of λ-values to x exceeds x / ( l o g x ) . 36 for all large x, while for φ it is equal to x / ( l o g x ) 1 + o ( 1 ) , an old result of Erdős. We also improve on an earlier result of the first author and Friedlander giving an upper bound for the distribution of λ-values.

On the ranks of elliptic curves in families of quadratic twists over number fields

Jung-Jo Lee (2014)

Czechoslovak Mathematical Journal

A conjecture due to Honda predicts that given any abelian variety over a number field K , all of its quadratic twists (or twists of a fixed order in general) have bounded Mordell-Weil rank. About 15 years ago, Rubin and Silverberg obtained an analytic criterion for Honda’s conjecture for a family of quadratic twists of an elliptic curve defined over the field of rational numbers. In this paper, we consider this problem over number fields. We will prove that the existence of a uniform upper bound...

On the rational approximation to the Thue–Morse–Mahler numbers

Yann Bugeaud (2011)

Annales de l’institut Fourier

Let ( t k ) k 0 be the Thue–Morse sequence on { 0 , 1 } defined by t 0 = 0 , t 2 k = t k and t 2 k + 1 = 1 - t k for k 0 . Let b 2 be an integer. We establish that the irrationality exponent of the Thue–Morse–Mahler number k 0 t k b - k is equal to 2 .

Currently displaying 2561 – 2580 of 3028