On the quotient sequence of sequences of integers
Let be a fixed integer. We study the asymptotic formula of , which is the number of positive integer solutions such that the polynomial is -free. We obtained the asymptotic formula of for all . Our result is new even in the case . We proved that , where is a constant depending on . This improves upon the error term obtained by G.-L. Zhou, Y. Ding (2022).
Let λ denote Carmichael’s function, so λ(n) is the universal exponent for the multiplicative group modulo n. It is closely related to Euler’s φ-function, but we show here that the image of λ is much denser than the image of φ. In particular the number of λ-values to x exceeds for all large x, while for φ it is equal to , an old result of Erdős. We also improve on an earlier result of the first author and Friedlander giving an upper bound for the distribution of λ-values.
A conjecture due to Honda predicts that given any abelian variety over a number field , all of its quadratic twists (or twists of a fixed order in general) have bounded Mordell-Weil rank. About 15 years ago, Rubin and Silverberg obtained an analytic criterion for Honda’s conjecture for a family of quadratic twists of an elliptic curve defined over the field of rational numbers. In this paper, we consider this problem over number fields. We will prove that the existence of a uniform upper bound...
Let be the Thue–Morse sequence on defined by , and for . Let be an integer. We establish that the irrationality exponent of the Thue–Morse–Mahler number is equal to .