Displaying 2801 – 2820 of 3028

Showing per page

On the vanishing of Iwasawa invariants of absolutely abelian p-extensions

Gen Yamamoto (2000)

Acta Arithmetica

1. Introduction. Let p be a prime number and p the ring of p-adic integers. Let k be a finite extension of the rational number field ℚ, k a p -extension of k, k n the nth layer of k / k , and A n the p-Sylow subgroup of the ideal class group of k n . Iwasawa proved the following well-known theorem about the order A n of A n : Theorem A (Iwasawa). Let k / k be a p -extension and A n the p-Sylow subgroup of the ideal class group of k n , where k n is the n th layer of k / k . Then there exist integers λ = λ ( k / k ) 0 , μ = μ ( k / k ) 0 , ν = ν ( k / k ) , and n₀ ≥ 0 such that A n = p λ n + μ p n + ν for...

On the variation of certain fractional part sequences

Michel Balazard, Leila Benferhat, Mihoub Bouderbala (2021)

Communications in Mathematics

Let b > a > 0 . We prove the following asymptotic formula n 0 | { x / ( n + a ) } - { x / ( n + b ) } | = 2 π ζ ( 3 / 2 ) c x + O ( c 2 / 9 x 4 / 9 ) , with c = b - a , uniformly for x 40 c - 5 ( 1 + b ) 27 / 2 .

On the Waring-Goldbach problem for one square and five cubes in short intervals

Fei Xue, Min Zhang, Jinjiang Li (2021)

Czechoslovak Mathematical Journal

Let N be a sufficiently large integer. We prove that almost all sufficiently large even integers n [ N - 6 U , N + 6 U ] can be represented as n = p 1 2 + p 2 3 + p 3 3 + p 4 3 + p 5 3 + p 6 3 , p 1 2 - N 6 U , p i 3 - N 6 U , i = 2 , 3 , 4 , 5 , 6 , where U = N 1 - δ + ε with δ 8 / 225 .

Currently displaying 2801 – 2820 of 3028