Deriving divisibility theorems with Burnside's theorem.
We give a parametrization of curves C of genus 2 with a maximal isotropic (ℤ/3)² in J[3], where J is the Jacobian variety of C, and develop the theory required to perform descent via (3,3)-isogeny. We apply this to several examples, where it is shown that non-reducible Jacobians have non-trivial 3-part of the Tate-Shafarevich group.
Soit un nombre premier impair. Soit une -extension galoisienne de corps ne contenant pas les racines -ièmes de l’unité : . Notons le groupe de Galois de et son sous-groupe de Frattini. Via une notion de descente galoisienne et les parallélogrammes galoisiens qu’elle induit, nous construisons ici toutes les extensions telles que soit d’ordre .
Un article précédent paru dans le Séminaire de Théorie des Nombres de Bordeaux contient une description détaillée des orbites de voisines pour les représentants des 15 classes de formes parfaites à 7 variables, non équivalentes à et qui possèdent plus de 28 vecteurs minimaux. Le lecteur trouvera ici le résultat correspondant pour , ainsi qu’une description plus détaillée des voisines de . Ceci termine la classification des formes parfaites en dimension 7. Un premier pas en direction de la classification...