Displaying 321 – 340 of 694

Showing per page

Polynomial growth of sumsets in abelian semigroups

Melvyn B. Nathanson, Imre Z. Ruzsa (2002)

Journal de théorie des nombres de Bordeaux

Let S be an abelian semigroup, and A a finite subset of S . The sumset h A consists of all sums of h elements of A , with repetitions allowed. Let | h A | denote the cardinality of h A . Elementary lattice point arguments are used to prove that an arbitrary abelian semigroup has polynomial growth, that is, there exists a polynomial p ( t ) such that | h A | = p ( h ) for all sufficiently large h . Lattice point counting is also used to prove that sumsets of the form h 1 A 1 + + h r A r have multivariate polynomial growth.

Polynomial orbits in finite commutative rings

Petra Konečná (2006)

Czechoslovak Mathematical Journal

Let R be a finite commutative ring with unity. We determine the set of all possible cycle lengths in the ring of polynomials with rational integral coefficients.

Polynomial points.

Cornelius, E.F. jun., Schultz, Phill (2007)

Journal of Integer Sequences [electronic only]

Polynomial quotients: Interpolation, value sets and Waring's problem

Zhixiong Chen, Arne Winterhof (2015)

Acta Arithmetica

For an odd prime p and an integer w ≥ 1, polynomial quotients q p , w ( u ) are defined by q p , w ( u ) ( u w - u w p ) / p m o d p with 0 q p , w ( u ) p - 1 , u ≥ 0, which are generalizations of Fermat quotients q p , p - 1 ( u ) . First, we estimate the number of elements 1 u < N p for which f ( u ) q p , w ( u ) m o d p for a given polynomial f(x) over the finite field p . In particular, for the case f(x)=x we get bounds on the number of fixed points of polynomial quotients. Second, before we study the problem of estimating the smallest number (called the Waring number) of summands needed to express each element of...

Polynomial relations amongst algebraic units of low measure

John Garza (2014)

Acta Arithmetica

For an algebraic number field and a subset α 1 , . . . , α r , we establish a lower bound for the average of the logarithmic heights that depends on the ideal of polynomials in [ x 1 , . . . , x r ] vanishing at the point ( α 1 , . . . , α r ) .

Polynomials and degrees of maps in real normed algebras

Takis Sakkalis (2020)

Communications in Mathematics

Let 𝒜 be the algebra of quaternions or octonions 𝕆 . In this manuscript an elementary proof is given, based on ideas of Cauchy and D’Alembert, of the fact that an ordinary polynomial f ( t ) 𝒜 [ t ] has a root in 𝒜 . As a consequence, the Jacobian determinant | J ( f ) | is always non-negative in 𝒜 . Moreover, using the idea of the topological degree we show that a regular polynomial g ( t ) over 𝒜 has also a root in 𝒜 . Finally, utilizing multiplication ( * ) in 𝒜 , we prove various results on the topological degree of products...

Currently displaying 321 – 340 of 694