The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 361 –
380 of
1970
In this paper we study the orthogonality of Fourier coefficients of holomorphic cusp forms in the sense of large sieve inequality. We investigate the family of GL 2 cusp forms modular with respect to the congruence subgroups Γ1(q), with additional averaging over the levels q ∼ Q. We obtain the orthogonality in the range N ≪ Q 2−δ for any δ > 0, where N is the length of linear forms in the large sieve.
We prove a large sieve type inequality for Maass forms and holomorphic cusp forms with level greater or equal to one and of integral or half-integral weight in short interval.
For large N, we consider the ordinary continued fraction of x=p/q with 1≤p≤q≤N, or, equivalently, Euclid’s gcd algorithm for two integers 1≤p≤q≤N, putting the uniform distribution on the set of p and qs. We study the distribution of the total cost of execution of the algorithm for an additive cost function c on the set ℤ+* of possible digits, asymptotically for N→∞. If c is nonlattice and satisfies mild growth conditions, the local limit theorem was proved previously by the second named author....
Let be a number field. We consider a local-global principle for elliptic curves that admit (or do not admit) a rational isogeny of prime degree . For suitable (including ), we prove that this principle holds for all , and for , but find a counterexample when for an elliptic curve with -invariant . For we show that, up to isomorphism, this is the only counterexample.
Currently displaying 361 –
380 of
1970