Displaying 381 – 400 of 694

Showing per page

Power values of certain quadratic polynomials

Anthony Flatters (2010)

Journal de Théorie des Nombres de Bordeaux

In this article we compute the q th power values of the quadratic polynomials f [ x ] with negative squarefree discriminant such that q is coprime to the class number of the splitting field of f over . The theory of unique factorisation and that of primitive divisors of integer sequences is used to deduce a bound on the values of q which is small enough to allow the remaining cases to be easily checked. The results are used to determine all perfect power terms of certain polynomially generated integer...

Power values of sums of products of consecutive integers

Lajos Hajdu, Shanta Laishram, Szabolcs Tengely (2016)

Acta Arithmetica

We investigate power values of sums of products of consecutive integers. We give general finiteness results, and also give all solutions when the number of terms in the sum considered is at most ten.

Power-free values, large deviations, and integer points on irrational curves

Harald A. Helfgott (2007)

Journal de Théorie des Nombres de Bordeaux

Let f [ x ] be a polynomial of degree d 3 without roots of multiplicity d or ( d - 1 ) . Erdős conjectured that, if f satisfies the necessary local conditions, then f ( p ) is free of ( d - 1 ) th powers for infinitely many primes p . This is proved here for all f with sufficiently high entropy.The proof serves to demonstrate two innovations: a strong repulsion principle for integer points on curves of positive genus, and a number-theoretical analogue of Sanov’s theorem from the theory of large deviations.

Power-moments of SL 3 ( ) Kloosterman sums

Goran Djanković (2013)

Czechoslovak Mathematical Journal

Classical Kloosterman sums have a prominent role in the study of automorphic forms on GL 2 and further they have numerous applications in analytic number theory. In recent years, various problems in analytic theory of automorphic forms on GL 3 have been considered, in which analogous GL 3 -Kloosterman sums (related to the corresponding Bruhat decomposition) appear. In this note we investigate the first four power-moments of the Kloosterman sums associated with the group SL 3 ( ) . We give formulas for the...

Poznámka o celočíselných polynomech, jejichž hodnoty jsou dělitelné číslem n !

Vlastimil Dlab (2013)

Učitel matematiky

Článek si dává za cíl ukázat, že z kanonických polynomů Dn(x) lze pomocí určitých lineárních kombinací vytvořit všechny polynomy, které jsou dělitelné n!. Autor formuluje větu o dělitelnosti těchto polynomů n!. Z této věty pak vyplývá celá řada tvrzení, z kterých uvádí pouze prvních šest. V každém tvrzení nalezne polynom a postupně tvrdí, že první je dělitelný 2, další 6, další 24, další číslem 120, další 720 a poslední 5040 pro celočíselné koeficienty. Vzhledem k těmto tvrzením formuluje obecné...

Currently displaying 381 – 400 of 694