The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 4101 – 4120 of 16591

Showing per page

Elliptic curves associated with simplest quartic fields

Sylvain Duquesne (2007)

Journal de Théorie des Nombres de Bordeaux

We are studying the infinite family of elliptic curves associated with simplest cubic fields. If the rank of such curves is 1, we determine the whole structure of the Mordell-Weil group and find all integral points on the original model of the curve. Note however, that we are not able to find them on the Weierstrass model if the parameter is even. We have also obtained similar results for an infinite subfamily of curves of rank 2. To our knowledge, this is the first time that so much information...

Elliptic curves over function fields with a large set of integral points

Ricardo P. Conceição (2013)

Acta Arithmetica

We construct isotrivial and non-isotrivial elliptic curves over q ( t ) with an arbitrarily large set of separable integral points. As an application of this construction, we prove that there are isotrivial log-general type varieties over q ( t ) with a Zariski dense set of separable integral points. This provides a counterexample to a natural translation of the Lang-Vojta conjecture to the function field setting. We also show that our main result provides examples of elliptic curves with an explicit and arbitrarily...

Elliptic curves with ( [ 3 ] ) = ( ζ 3 ) and counterexamples to local-global divisibility by 9

Laura Paladino (2010)

Journal de Théorie des Nombres de Bordeaux

We give a family h , β of elliptic curves, depending on two nonzero rational parameters β and h , such that the following statement holds: let be an elliptic curve and let [ 3 ] be its 3-torsion subgroup. This group verifies ( [ 3 ] ) = ( ζ 3 ) if and only if belongs to h , β .Furthermore, we consider the problem of the local-global divisibility by 9 for points of elliptic curves. The number 9 is one of the few exceptional powers of primes, for which an answer to the local-global divisibility is unknown in the case of such...

Elliptic curves with j-invariant equals 0 or 1728 over a finite prime field.

Carlos Munuera Gómez (1991)

Extracta Mathematicae

Let p be a prime number, p ≠ 2,3 and Fp the finite field with p elements. An elliptic curve E over Fp is a projective nonsingular curve of genus 1 defined over Fp. Each one of these curves has an isomorphic model given by an (Weierstrass) equation E: y2 = x3 + Ax + B, A,B ∈ Fp with D = 4A3 + 27B2 ≠ 0. The j-invariant of E is defined by j(E) = 1728·4A3/D.The aim of this note is to establish some results concerning the cardinality of the group of points on elliptic curves over Fp with j-invariants...

Embedding orders into central simple algebras

Benjamin Linowitz, Thomas R. Shemanske (2012)

Journal de Théorie des Nombres de Bordeaux

The question of embedding fields into central simple algebras B over a number field K was the realm of class field theory. The subject of embedding orders contained in the ring of integers of maximal subfields L of such an algebra into orders in that algebra is more nuanced. The first such result along those lines is an elegant result of Chevalley [6] which says that with B = M n ( K ) the ratio of the number of isomorphism classes of maximal orders in B into which the ring of integers of L can be embedded...

Embeddings of maximal tori in orthogonal groups

Eva Bayer-Fluckiger (2014)

Annales de l’institut Fourier

We give necessary and sufficient conditions for an orthogonal group defined over a global field of characteristic 2 to contain a maximal torus of a given type.

Currently displaying 4101 – 4120 of 16591