Displaying 601 – 620 of 694

Showing per page

Prolongement méromorphe des séries de Dirichlet associées à des fractions rationnelles de plusieurs variables

Patrick Sargos (1984)

Annales de l'institut Fourier

Soient P ( x _ ) = P ( x 1 , ... , x n ) et Q ( x _ ) = Q ( x 1 , ... , x n ) deux polynômes à coefficients positifs vérifiant : lim | x _ | + x 1 , ... , x n 1 P ( x _ ) Q ( x _ ) = + . Soient η _ = ( η 1 , ... , η n ) N n et R = P / Q . On étudie la série de Dirichlet Z ( R , η _ ; s ) = η 1 , ... , η n = 1 η _ η _ R ( η _ ) - s : abscisse de convergence absolue, existence et nature du prolongement méromorphe, ordre de grandeur dans les bandes verticales. On donne un procédé de construction du prolongement méromorphe de la fonction s Z ( R , η _ ; s ) qui ne dépend que de η _ et de certains monômes de P et Q : les monômes extrémaux.

Proof of a conjecture of Hirschhorn and Sellers on overpartitions

William Y. C. Chen, Ernest X. W. Xia (2014)

Acta Arithmetica

Let p̅(n) denote the number of overpartitions of n. It was conjectured by Hirschhorn and Sellers that p̅(40n+35) ≡ 0 (mod 40) for n ≥ 0. Employing 2-dissection formulas of theta functions due to Ramanujan, and Hirschhorn and Sellers, we obtain a generating function for p̅(40n+35) modulo 5. Using the (p, k)-parametrization of theta functions given by Alaca, Alaca and Williams, we prove the congruence p̅(40n+35) ≡ 0 (mod 5) for n ≥ 0. Combining this congruence and the congruence p̅(4n+3) ≡ 0 (mod...

Proof of a conjectured three-valued family of Weil sums of binomials

Daniel J. Katz, Philippe Langevin (2015)

Acta Arithmetica

We consider Weil sums of binomials of the form W F , d ( a ) = x F ψ ( x d - a x ) , where F is a finite field, ψ: F → ℂ is the canonical additive character, g c d ( d , | F × | ) = 1 , and a F × . If we fix F and d, and examine the values of W F , d ( a ) as a runs through F × , we always obtain at least three distinct values unless d is degenerate (a power of the characteristic of F modulo | F × | ). Choices of F and d for which we obtain only three values are quite rare and desirable in a wide variety of applications. We show that if F is a field of order 3ⁿ with n odd, and d = 3 r + 2 with...

Propagation de la 2-birationalité

Claire Bourbon, Jean-François Jaulent (2013)

Acta Arithmetica

Let L/K be a 2-birational CM-extension of a totally real 2-rational number field. We characterize in terms of tame ramification totally real 2-extensions K’/K such that the compositum L’=LK’ is still 2-birational. In case the 2-extension K’/K is linearly disjoint from the cyclotomic ℤ₂-extension K c / K , we prove that K’/K is at most quadratic. Furthermore, we construct infinite towers of such 2-extensions.

Proper cycles of indefinite quadratic forms and their right neighbors

Ahmet Tekcan (2007)

Applications of Mathematics

In this paper we consider proper cycles of indefinite integral quadratic forms F = ( a , b , c ) with discriminant Δ . We prove that the proper cycles of F can be obtained using their consecutive right neighbors R i ( F ) for i 0 . We also derive explicit relations in the cycle and proper cycle of F when the length l of the cycle of F is odd, using the transformations τ ( F ) = ( - a , b , - c ) and χ ( F ) = ( - c , b , - a ) .

Currently displaying 601 – 620 of 694