Projective Models of Shioda Modular Surfaces.
Soient et deux polynômes à coefficients positifs vérifiant :Soient et . On étudie la série de Dirichlet : abscisse de convergence absolue, existence et nature du prolongement méromorphe, ordre de grandeur dans les bandes verticales. On donne un procédé de construction du prolongement méromorphe de la fonction qui ne dépend que de et de certains monômes de et : les monômes extrémaux.
Nous montrons dans la première partie l’existence d’un prolongement méromorphe à tout le plan complexe et explicitons les propriétés et quelques conséquences, d’une large classe de séries zêta des hauteurs associées à l’espace projectif
Let p̅(n) denote the number of overpartitions of n. It was conjectured by Hirschhorn and Sellers that p̅(40n+35) ≡ 0 (mod 40) for n ≥ 0. Employing 2-dissection formulas of theta functions due to Ramanujan, and Hirschhorn and Sellers, we obtain a generating function for p̅(40n+35) modulo 5. Using the (p, k)-parametrization of theta functions given by Alaca, Alaca and Williams, we prove the congruence p̅(40n+35) ≡ 0 (mod 5) for n ≥ 0. Combining this congruence and the congruence p̅(4n+3) ≡ 0 (mod...
We consider Weil sums of binomials of the form , where F is a finite field, ψ: F → ℂ is the canonical additive character, , and . If we fix F and d, and examine the values of as a runs through , we always obtain at least three distinct values unless d is degenerate (a power of the characteristic of F modulo ). Choices of F and d for which we obtain only three values are quite rare and desirable in a wide variety of applications. We show that if F is a field of order 3ⁿ with n odd, and with...
Let L/K be a 2-birational CM-extension of a totally real 2-rational number field. We characterize in terms of tame ramification totally real 2-extensions K’/K such that the compositum L’=LK’ is still 2-birational. In case the 2-extension K’/K is linearly disjoint from the cyclotomic ℤ₂-extension , we prove that K’/K is at most quadratic. Furthermore, we construct infinite towers of such 2-extensions.
In this paper we consider proper cycles of indefinite integral quadratic forms with discriminant . We prove that the proper cycles of can be obtained using their consecutive right neighbors for . We also derive explicit relations in the cycle and proper cycle of when the length of the cycle of is odd, using the transformations and .