Displaying 641 – 660 of 1340

Showing per page

The mantissa distribution of the primorial numbers

Bruno Massé, Dominique Schneider (2014)

Acta Arithmetica

We show that the sequence of mantissas of the primorial numbers Pₙ, defined as the product of the first n prime numbers, is distributed following Benford's law. This is done by proving that the values of the first Chebyshev function at prime numbers are uniformly distributed modulo 1. We provide a convergence rate estimate. We also briefly treat some other sequences defined in the same way as Pₙ.

The mean square of the divisor function

Chaohua Jia, Ayyadurai Sankaranarayanan (2014)

Acta Arithmetica

Let d(n) be the divisor function. In 1916, S. Ramanujan stated without proof that n x d ² ( n ) = x P ( l o g x ) + E ( x ) , where P(y) is a cubic polynomial in y and E ( x ) = O ( x 3 / 5 + ε ) , with ε being a sufficiently small positive constant. He also stated that, assuming the Riemann Hypothesis (RH), E ( x ) = O ( x 1 / 2 + ε ) . In 1922, B. M. Wilson proved the above result unconditionally. The direct application of the RH would produce E ( x ) = O ( x 1 / 2 ( l o g x ) l o g l o g x ) . In 2003, K. Ramachandra and A. Sankaranarayanan proved the above result without any assumption. In this paper, we prove E ( x ) = O ( x 1 / 2 ( l o g x ) ) .

The mean value of |L(k,χ)|² at positive rational integers k ≥ 1

Stéphane Louboutin (2001)

Colloquium Mathematicae

Let k ≥ 1 denote any positive rational integer. We give formulae for the sums S o d d ( k , f ) = χ ( - 1 ) = - 1 | L ( k , χ ) | ² (where χ ranges over the ϕ(f)/2 odd Dirichlet characters modulo f > 2) whenever k ≥ 1 is odd, and for the sums S e v e n ( k , f ) = χ ( - 1 ) = + 1 | L ( k , χ ) | ² (where χ ranges over the ϕ(f)/2 even Dirichlet characters modulo f>2) whenever k ≥ 1 is even.

The mean values of logarithms of algebraic integers

Artūras Dubickas (1998)

Journal de théorie des nombres de Bordeaux

Let α be an algebraic integer of degree d with conjugates α 1 = α , α 2 , , α d . In the paper we give a lower bound for the mean value M p ( α ) = 1 d i = 1 d | log | α i | | p p when α is not a root of unity and p > 1 .

The method of infinite ascent applied on A 4 ± n B 3 = C 2

Susil Kumar Jena (2013)

Czechoslovak Mathematical Journal

Each of the Diophantine equations A 4 ± n B 3 = C 2 has an infinite number of integral solutions ( A , B , C ) for any positive integer n . In this paper, we will show how the method of infinite ascent could be applied to generate these solutions. We will investigate the conditions when A , B and C are pair-wise co-prime. As a side result of this investigation, we will show a method of generating an infinite number of co-prime integral solutions ( A , B , C ) of the Diophantine equation a A 3 + c B 3 = C 2 for any co-prime integer pair ( a , c ) .

Currently displaying 641 – 660 of 1340