Displaying 661 – 680 of 1340

Showing per page

The minimal resultant locus

Robert Rumely (2015)

Acta Arithmetica

Let K be a complete, algebraically closed nonarchimedean valued field, and let φ(z) ∈ K(z) have degree d ≥ 2. We study how the resultant of φ varies under changes of coordinates. For γ ∈ GL₂(K), we show that the map γ o r d ( R e s ( φ γ ) ) factors through a function o r d R e s φ ( · ) on the Berkovich projective line, which is piecewise affine and convex up. The minimal resultant is achieved either at a single point in P ¹ K , or on a segment, and the minimal resultant locus is contained in the tree in P ¹ K spanned by the fixed points and poles...

The modified diagonal cycle on the triple product of a pointed curve

Benedict H. Gross, Chad Schoen (1995)

Annales de l'institut Fourier

Let X be a curve over a field k with a rational point e . We define a canonical cycle Δ e Z 2 ( X 3 ) hom . Suppose that k is a number field and that X has semi-stable reduction over the integers of k with fiber components non-singular. We construct a regular model of X 3 and show that the height pairing τ * ( Δ e ) , τ * ' ( Δ e ) is well defined where τ and τ ' are correspondences. The paper ends with a brief discussion of heights and L -functions in the case that X is a modular curve.

The module of vector-valued modular forms is Cohen-Macaulay

Richard Gottesman (2020)

Czechoslovak Mathematical Journal

Let H denote a finite index subgroup of the modular group Γ and let ρ denote a finite-dimensional complex representation of H . Let M ( ρ ) denote the collection of holomorphic vector-valued modular forms for ρ and let M ( H ) denote the collection of modular forms on H . Then M ( ρ ) is a -graded M ( H ) -module. It has been proven that M ( ρ ) may not be projective as a M ( H ) -module. We prove that M ( ρ ) is Cohen-Macaulay as a M ( H ) -module. We also explain how to apply this result to prove that if M ( H ) is a polynomial ring, then M ( ρ ) is a free...

The monotone Poisson process

Alexander C. R. Belton (2006)

Banach Center Publications

The coefficients of the moments of the monotone Poisson law are shown to be a type of Stirling number of the first kind; certain combinatorial identities relating to these numbers are proved and a new derivation of the Cauchy transform of this law is given. An investigation is begun into the classical Azéma-type martingale which corresponds to the compensated monotone Poisson process; it is shown to have the chaotic-representation property and its sample paths are described.

Currently displaying 661 – 680 of 1340