The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 701 – 720 of 1970

Showing per page

A p -adic measure attached to the zeta functions associated with two elliptic modular forms. II

Haruzo Hida (1988)

Annales de l'institut Fourier

Let f = n = 1 a ( n ) q n and g = n = 1 b ( n ) q n be holomorphic common eigenforms of all Hecke operators for the congruence subgroup Γ 0 ( N ) of S L 2 ( Z ) with “Nebentypus” character ψ and ξ and of weight k and , respectively. Define the Rankin product of f and g by 𝒟 N ( s , f , g ) = ( n = 1 ψ ξ ( n ) n k + - 2 s - 2 ) ( n = 1 a ( n ) b ( n ) n - s ) . Supposing f and g to be ordinary at a prime p 5 , we shall construct a p -adically analytic L -function of three variables which interpolate the values 𝒟 N ( + m , f , g ) π + 2 m + 1 < f , f > for integers m with 0 m < k - 1 , by regarding all the ingredients m , f and g as variables. Here f , f is the Petersson self-inner product of f .

A p-adic Perron-Frobenius theorem

Robert Costa, Patrick Dynes, Clayton Petsche (2016)

Acta Arithmetica

We prove that if an n×n matrix defined over ℚ ₚ (or more generally an arbitrary complete, discretely-valued, non-Archimedean field) satisfies a certain congruence property, then it has a strictly maximal eigenvalue in ℚ ₚ, and that iteration of the (normalized) matrix converges to a projection operator onto the corresponding eigenspace. This result may be viewed as a p-adic analogue of the Perron-Frobenius theorem for positive real matrices.

Currently displaying 701 – 720 of 1970