The prime power conjecture is true for .
Given a smooth subscheme of a projective space over a finite field, we compute the probability that its intersection with a fixed number of hypersurface sections of large degree is smooth of the expected dimension. This generalizes the case of a single hypersurface, due to Poonen. We use this result to give a probabilistic model for the number of rational points of such a complete intersection. A somewhat surprising corollary is that the number of rational points on a random smooth intersection...
Let α be a totally positive algebraic integer of degree d, i.e., all of its conjugates are positive real numbers. We study the set ₂ of the quantities . We first show that √2 is the smallest point of ₂. Then, we prove that there exists a number l such that ₂ is dense in (l,∞). Finally, using the method of auxiliary functions, we find the six smallest points of ₂ in (√2,l). The polynomials involved in the auxiliary function are found by a recursive algorithm.
Answering a question of Erdős, we show that a positive proportion of even numbers are in the form s(n), where s(n) = σ(n) - n, the sum of proper divisors of n.