Berechnung kleiner Diskriminanten total reeller algebraischer Zahlkörper.
Let K = Q(ζp) and let hp be its class number. Kummer showed that p divides hp if and only if p divides the numerator of some Bernoulli number. In this expository note we discuss the generalizations of this type of criterion to totally real fields and quadratic imaginary fields.
We discuss Bernstein polynomials of reductive linear free divisors. We define suitable Brieskorn lattices for these non-isolated singularities, and show the analogue of Malgrange’s result relating the roots of the Bernstein polynomial to the residue eigenvalues on the saturation of these Brieskorn lattices.
Let be a self-similar set with similarities ratio and Hausdorff dimension , let be a probability vector. The Besicovitch-type subset of is defined aswhere is the indicator function of the set . Let and be a gauge function, then we prove in this paper:(i) If , thenmoreover both of and are finite positive;(ii) If is a positive probability vector other than , then the gauge functions can be partitioned as follows