A unitary criterion for p-adic groups.
Let be a finite extension of discrete valuation rings of characteristic , and suppose that the corresponding extension of fields of fractions is separable and is -Galois for some -Hopf algebra . Let be the different of . We show that if is totally ramified and its degree is a power of , then any element of with generates as an -module. This criterion is best possible. These results generalise to the Hopf-Galois situation recent work of G. G. Elder for Galois extensions.
We consider a variety of Euler’s sum of powers conjecture, i.e., whether the Diophantine system has positive integer or rational solutions , , , , Using the theory of elliptic curves, we prove that it has no positive integer solution for , but there are infinitely many positive integers such that it has a positive integer solution for . As a corollary, for and any positive integer , the above Diophantine system has a positive rational solution. Meanwhile, we give conditions such that...
We prove an explicit bound for N(σ,T), the number of zeros of the Riemann zeta function satisfying ℜ𝔢 s ≥ σ and 0 ≤ ℑ𝔪 s ≤ T. This result provides a significant improvement to Rosser's bound for N(T) when used for estimating prime counting functions.