Displaying 1121 – 1140 of 1340

Showing per page

Tilings associated with non-Pisot matrices

Maki Furukado, Shunji Ito, E. Arthur Robinson (2006)

Annales de l’institut Fourier

Suppose A G l d ( ) has a 2-dimensional expanding subspace E u , satisfies a regularity condition, called “good star”, and has A * 0 , where A * is an oriented compound of A . A morphism θ of the free group on { 1 , 2 , , d } is called a non-abelianization of A if it has structure matrix A . We show that there is a tiling substitution Θ whose “boundary substitution” θ = Θ is a non-abelianization of A . Such a tiling substitution Θ leads to a self-affine tiling of E u 2 with A u : = A | E u G L 2 ( ) as its expansion. In the last section we find conditions on A so...

Time delay in chemical exchange during an NMR pulse

Dan Gamliel (2014)

Mathematica Bohemica

Spin exchange with a time delay in NMR (nuclear magnetic resonance) was treated in a previous work. In the present work the idea is applied to a case where all magnetization components are relevant. The resulting DDE (delay differential equations) are formally solved by the Laplace transform. Then the stability of the system is studied using the real and imaginary parts of the determinant in the characteristic equation. Using typical parameter values for the DDE system, stability is shown for all...

Tong’s spectrum for Rosen continued fractions

Cornelis Kraaikamp, Thomas A. Schmidt, Ionica Smeets (2007)

Journal de Théorie des Nombres de Bordeaux

In the 1990s, J.C. Tong gave a sharp upper bound on the minimum of k consecutive approximation constants for the nearest integer continued fractions. We generalize this to the case of approximation by Rosen continued fraction expansions. The Rosen fractions are an infinite set of continued fraction algorithms, each giving expansions of real numbers in terms of certain algebraic integers. For each, we give a best possible upper bound for the minimum in appropriate consecutive blocks of approximation...

Topics in computational algebraic number theory

Karim Belabas (2004)

Journal de Théorie des Nombres de Bordeaux

We describe practical algorithms from computational algebraic number theory, with applications to class field theory. These include basic arithmetic, approximation and uniformizers, discrete logarithms and computation of class fields. All algorithms have been implemented in the Pari/Gp system.

Topological aspects of infinitude of primes in arithmetic progressions

František Marko, Štefan Porubský (2015)

Colloquium Mathematicae

We investigate properties of coset topologies on commutative domains with an identity, in particular, the 𝓢-coprime topologies defined by Marko and Porubský (2012) and akin to the topology defined by Furstenberg (1955) in his proof of the infinitude of rational primes. We extend results about the infinitude of prime or maximal ideals related to the Dirichlet theorem on the infinitude of primes from Knopfmacher and Porubský (1997), and correct some results from that paper. Then we determine cluster...

Topological properties of two-dimensional number systems

Shigeki Akiyama, Jörg M. Thuswaldner (2000)

Journal de théorie des nombres de Bordeaux

In the two dimensional real vector space 2 one can define analogs of the well-known q -adic number systems. In these number systems a matrix M plays the role of the base number q . In the present paper we study the so-called fundamental domain of such number systems. This is the set of all elements of 2 having zero integer part in their “ M -adic” representation. It was proved by Kátai and Környei, that is a compact set and certain translates of it form a tiling of the 2 . We construct points, where...

Torsion and Tamagawa numbers

Dino Lorenzini (2011)

Annales de l’institut Fourier

Let K be a number field, and let A / K be an abelian variety. Let c denote the product of the Tamagawa numbers of A / K , and let A ( K ) tors denote the finite torsion subgroup of A ( K ) . The quotient c / | A ( K ) tors | is a factor appearing in the leading term of the L -function of A / K in the conjecture of Birch and Swinnerton-Dyer. We investigate in this article possible cancellations in this ratio. Precise results are obtained for elliptic curves over or quadratic extensions K / , and for abelian surfaces A / . The smallest possible ratio...

Torsion des courbes elliptiques sur les corps cubiques

Pierre Parent (2000)

Annales de l'institut Fourier

On donne la liste (à un élément près) des nombres premiers qui sont l’ordre d’un point de torsion d’une courbe elliptique sur un corps de nombres de degré trois.

Currently displaying 1121 – 1140 of 1340