The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 1221 – 1240 of 3028

Showing per page

On reduced Arakelov divisors of real quadratic fields

Ha Thanh Nguyen Tran (2016)

Acta Arithmetica

We generalize the concept of reduced Arakelov divisors and define C-reduced divisors for a given number C ≥ 1. These C-reduced divisors have remarkable properties, similar to the properties of reduced ones. We describe an algorithm to test whether an Arakelov divisor of a real quadratic field F is C-reduced in time polynomial in l o g | Δ F | with Δ F the discriminant of F. Moreover, we give an example of a cubic field for which our algorithm does not work.

On relations between f -density and ( R ) -density

Václav Kijonka (2007)

Acta Mathematica Universitatis Ostraviensis

In this paper it is discus a relation between f -density and ( R ) -density. A generalization of Šalát’s result concerning this relation in the case of asymptotic density is proved.

On relative integral bases for unramified extensions

Kevin Hutchinson (1995)

Acta Arithmetica

0. Introduction. Since ℤ is a principal ideal domain, every finitely generated torsion-free ℤ-module has a finite ℤ-basis; in particular, any fractional ideal in a number field has an "integral basis". However, if K is an arbitrary number field the ring of integers, A, of K is a Dedekind domain but not necessarily a principal ideal domain. If L/K is a finite extension of number fields, then the fractional ideals of L are finitely generated and torsion-free (or, equivalently, finitely generated and...

On relative pure cyclic fields with power integral bases

Mohammed Sahmoudi, Mohammed Elhassani Charkani (2023)

Mathematica Bohemica

Let L = K ( α ) be an extension of a number field K , where α satisfies the monic irreducible polynomial P ( X ) = X p - β of prime degree belonging to 𝔬 K [ X ] ( 𝔬 K is the ring of integers of K ). The purpose of this paper is to study the monogenity of L over K by a simple and practical version of Dedekind’s criterion characterizing the existence of power integral bases over an arbitrary Dedekind ring by using the Gauss valuation and the index ideal. As an illustration, we determine an integral basis of a pure nonic field L with a...

Currently displaying 1221 – 1240 of 3028