Displaying 1361 – 1380 of 1526

Showing per page

Sur les unités des extensions cubiques cycliques non ramifiées sur certains sous-corps de Q ( d , - 3 )

Abdelmalek Azizi, Mohamed Ayadi, Moulay Chrif Ismaili, Mohamed Talbi (2009)

Annales mathématiques Blaise Pascal

Soient k le corps quadratique réel Q ( d ) (respectivement le corps biquadratique Q ( d , - 3 ) ), d un entier positif sans facteur carré, K une extension cubique cyclique non ramifiée de k , diédrale sur Q totalement réelle, (respectivement diédrale sur Q ( - 3 ) .)On constate qu’on a deux structures possibles pour le groupe des unités U K de K , notées a l p h a et d e l t a .

Sur les unités d’une extension galoisienne non abélienne de degré p q du corps des rationnels p et q nombres premiers impairs

Nicole Moser (1979)

Annales de l'institut Fourier

Soit K / Q une extension galoisienne non abélienne, de degré p q , de groupe G . On étudie dans cet article la structure du groupe des unités U K de K , en tant que module sur l’algèbre Z [ G ] . Cela permet de donner quelques propriétés arithmétiques de K , comme la détermination des images de U K par les applications normes sur les sous-corps de K , la participation de p au nombre de classes de K , et des conditions nécessaires d’existence d’une unité de Minkowski dans K .

Sur les zéros réels des polynômes de Bernoulli

Hubert Delange (1991)

Annales de l'institut Fourier

Nous donnons les démonstrations détaillées des résultats énoncés dans une note de même titre (C. R. Acad. Sci., Paris, Ser. I 303 (1986), 539–542).Ces résultats concernent le nombre et la position des zéros réels des polynômes de Bernoulli.

Sur l’existence des corps biquadratiques K dont le groupe de Galois du deuxième 2 -corps de classes de Hilbert par rapport à K est semi-diédral

Abdelmalek Azizi, Ali Mouhib (2005)

Archivum Mathematicum

Let K be a biquadratic field, K 2 ( 1 ) be the Hilbert 2 -class field of K and K 2 ( 2 ) be the Hilbert 2 -class field of K 2 ( 1 ) . Our goal is to prove that there exists a biquadratic field K such that Gal ( K 2 ( 1 ) / K ) / 2 × / 2 and the group Gal ( K 2 ( 2 ) / K ) is semi-dihedral. Résumé. Soient K un corps biquadratique, K 2 ( 1 ) le 2 -corps de classes de Hilbert de K et K 2 ( 2 ) le 2 -corps de classes de Hilbert de K 2 ( 1 ) . Notre but est de prouver qu’il existe des corps biquadratiques réels K tels que le groupe Gal ( K 2 ( 1 ) / K ) est de type ( 2 , 2 ) et le groupe Gal ( K 2 ( 2 ) / K ) est semi-diédral.

Currently displaying 1361 – 1380 of 1526