The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 1461 – 1480 of 3028

Showing per page

On sums of three squares

James W. Cogdell (2003)

Journal de théorie des nombres de Bordeaux

We address the question of when an integer in a totally real number field can be written as the sum of three squared integers from the field and more generally whether it can be represented by a positive definite integral ternary quadratic form over the field. In recent work with Piatetski-Shapiro and Sarnak we have shown that every sufficiently large totally positive square free integer is globally integrally represented if and only if it is so locally at all places, thus essentially resolving...

On sums of two cubes: an Ω₊-estimate for the error term

M. Kühleitner, W. G. Nowak, J. Schoissengeier, T. D. Wooley (1998)

Acta Arithmetica

The arithmetic function r k ( n ) counts the number of ways to write a natural number n as a sum of two kth powers (k ≥ 2 fixed). The investigation of the asymptotic behaviour of the Dirichlet summatory function of r k ( n ) leads in a natural way to a certain error term P k ( t ) which is known to be O ( t 1 / 4 ) in mean-square. In this article it is proved that P ( t ) = Ω ( t 1 / 4 ( l o g l o g t ) 1 / 4 ) as t → ∞. Furthermore, it is shown that a similar result would be true for every fixed k > 3 provided that a certain set of algebraic numbers contains a sufficiently...

On sum-sets and product-sets of complex numbers

József Solymosi (2005)

Journal de Théorie des Nombres de Bordeaux

We give a simple argument that for any finite set of complex numbers A , the size of the the sum-set, A + A , or the product-set, A · A , is always large.

Currently displaying 1461 – 1480 of 3028