The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 1641 –
1660 of
3028
Let be a prime and a -adic field (a finite extension of the field of -adic numbers ). We employ the main results in [12] and the arithmetic of elliptic curves over to reduce the problem of classifying 3-dimensional non-associative division algebras (up to isotopy) over to the classification of ternary cubic forms over (up to equivalence) with no non-trivial zeros over . We give an explicit solution to the latter problem, which we then relate to the reduction type of the jacobian...
Let p be a prime number, and let [...] Q¯ p be the completion of Q with respect to the pseudovaluation w which extends the p-adic valuation vp. In this paper our goal is to give a characterization of closed subfields of [...] Q¯ p , the completion of Q with respect w, i.e. the spectral extension of the p-adic valuation vp on Q.
Generalizing Cusick’s theorem on the closedness of the classical Lagrange spectrum for the approximation of real numbers by rational ones, we prove that various approximation spectra are closed, using penetration properties of the geodesic flow in cusp neighbourhoods in negatively curved manifolds and a result of Maucourant [Mau].
Let be a Dedekind domain with field of fractions and a finite group. We show that, if is a ring of -adic integers, then the Witt decomposition map between the Grothendieck-Witt group of bilinear -modules and the one of finite bilinear -modules is surjective. For number fields is also surjective, if is a nilpotent group of odd order, but there are counterexamples for groups of even order.
We propose two conjectures which imply the Collatz conjecture. We give a numerical evidence for the second conjecture.
Currently displaying 1641 –
1660 of
3028