The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 1681 –
1700 of
3028
In [6], S. Bloch conjectures a formula for the Artin conductor of the ℓ-adic etale cohomology of a regular model of a variety over a local field and proves it for a curve. The formula, which we call the conductor formula of Bloch, enables us to compute the conductor that measures the wild ramification by using the sheaf of differential 1-forms. In this paper, we prove the formula in arbitrary dimension under the assumption that the reduced closed fiber has normal crossings.
Assertions on the congruence
f(x) + g(y) + c ≡ 0 (mod xy)
made without proof by Mordell in his paper in Acta Math. 88 (1952) are either proved or disproved.
We show a connection between a recent conjecture of Shallit and an older conjecture of Rauzy for infinite words on a finite alphabet. More precisely we show that a Rauzy-like conjecture is equivalent to Shallit's. In passing we correct a misprint in Rauzy's conjecture.
We consider the problem of constructing dense lattices in with a given non trivial automorphisms group. We exhibit a family of such lattices of density at least , which matches, up to a multiplicative constant, the best known density of a lattice packing. For an infinite sequence of dimensions , we exhibit a finite set of lattices that come with an automorphisms group of size , and a constant proportion of which achieves the aforementioned lower bound on the largest packing density. The algorithmic...
Currently displaying 1681 –
1700 of
3028