Displaying 1701 – 1720 of 3028

Showing per page

On the convergence to 0 of mₙξmod 1

Bassam Fayad, Jean-Paul Thouvenot (2014)

Acta Arithmetica

We show that for any irrational number α and a sequence m l l of integers such that l i m l | | | m l α | | | = 0 , there exists a continuous measure μ on the circle such that l i m l | | | m l θ | | | d μ ( θ ) = 0 . This implies that any rigidity sequence of any ergodic transformation is a rigidity sequence for some weakly mixing dynamical system. On the other hand, we show that for any α ∈ ℝ - ℚ, there exists a sequence m l l of integers such that | | | m l α | | | 0 and such that m l θ [ 1 ] is dense on the circle if and only if θ ∉ ℚα + ℚ.

On the correlation of families of pseudorandom sequences of k symbols

Kit-Ho Mak, Alexandru Zaharescu (2016)

Acta Arithmetica

In an earlier paper Gyarmati introduced the notion of f-correlation for families of binary pseudorandom sequences as a measure of randomness in the family. In this paper we generalize the f-correlation to families of pseudorandom sequences of k symbols and study its properties.

On the counting function for the generalized Niven numbers

Ryan Daileda, Jessica Jou, Robert Lemke-Oliver, Elizabeth Rossolimo, Enrique Treviño (2009)

Journal de Théorie des Nombres de Bordeaux

Given an integer base q 2 and a completely q -additive arithmetic function f taking integer values, we deduce an asymptotic expression for the counting function N f ( x ) = # 0 n < x | f ( n ) n under a mild restriction on the values of f . When f = s q , the base q sum of digits function, the integers counted by N f are the so-called base q Niven numbers, and our result provides a generalization of the asymptotic known in that case.

On the critical determinants of certain star bodies

Werner Georg Nowak (2017)

Communications in Mathematics

In a classic paper, W.G. Spohn established the to-date sharpest estimates from below for the simultaneous Diophantine approximation constants for three and more real numbers. As a by-result of his method which used Blichfeldt’s Theorem and the calculus of variations, he derived a bound for the critical determinant of the star body | x 1 | ( | x 1 | 3 + | x 2 | 3 + | x 3 | 3 ) 1 . In this little note, after a brief exposition of the basics of the geometry of numbers and its significance for Diophantine approximation, this latter result is improved...

Currently displaying 1701 – 1720 of 3028