Displaying 1721 – 1740 of 1964

Showing per page

Arithmetic of linear forms involving odd zeta values

Wadim Zudilin (2004)

Journal de Théorie des Nombres de Bordeaux

A general hypergeometric construction of linear forms in (odd) zeta values is presented. The construction allows to recover the records of Rhin and Viola for the irrationality measures of ζ ( 2 ) and ζ ( 3 ) , as well as to explain Rivoal’s recent result on infiniteness of irrational numbers in the set of odd zeta values, and to prove that at least one of the four numbers ζ ( 5 ) , ζ ( 7 ) , ζ ( 9 ) , and ζ ( 11 ) is irrational.

Arithmetic of non-principal orders in algebraic number fields

Andreas Philipp (2010)

Actes des rencontres du CIRM

Let R be an order in an algebraic number field. If R is a principal order, then many explicit results on its arithmetic are available. Among others, R is half-factorial if and only if the class group of R has at most two elements. Much less is known for non-principal orders. Using a new semigroup theoretical approach, we study half-factoriality and further arithmetical properties for non-principal orders in algebraic number fields.

Arithmetic of the modular function j 1 , 4

Chang Heon Kim, Ja Kyung Koo (1998)

Acta Arithmetica

We find a generator j 1 , 4 of the function field on the modular curve X₁(4) by means of classical theta functions θ₂ and θ₃, and estimate the normalized generator N ( j 1 , 4 ) which becomes the Thompson series of type 4C. With these modular functions we investigate some number theoretic properties.

Arithmetic progressions and the primes.

Terence Tao (2006)

Collectanea Mathematica

We describe some of the machinery behind recent progress in establishing infinitely many arithmetic progressions of length k in various sets of integers, in particular in arbitrary dense subsets of the integers, and in the primes.

Arithmetic progressions in sumsets

Imre Z. Ruzsa (1991)

Acta Arithmetica

1. Introduction. Let A,B ⊂ [1,N] be sets of integers, |A|=|B|=cN. Bourgain [2] proved that A+B always contains an arithmetic progression of length e x p ( l o g N ) 1 / 3 - ε . Our aim is to show that this is not very far from the best possible. Theorem 1. Let ε be a positive number. For every prime p > p₀(ε) there is a symmetric set A of residues mod p such that |A| > (1/2-ε)p and A + A contains no arithmetic progression of length (1.1) e x p ( l o g p ) 2 / 3 + ε . A set of residues can be used to get a set of integers in an obvious way. Observe...

Currently displaying 1721 – 1740 of 1964