Displaying 81 – 100 of 135

Showing per page

On the counting function for the generalized Niven numbers

Ryan Daileda, Jessica Jou, Robert Lemke-Oliver, Elizabeth Rossolimo, Enrique Treviño (2009)

Journal de Théorie des Nombres de Bordeaux

Given an integer base q 2 and a completely q -additive arithmetic function f taking integer values, we deduce an asymptotic expression for the counting function N f ( x ) = # 0 n < x | f ( n ) n under a mild restriction on the values of f . When f = s q , the base q sum of digits function, the integers counted by N f are the so-called base q Niven numbers, and our result provides a generalization of the asymptotic known in that case.

On the divisibility of power LCM matrices by power GCD matrices

Jian Rong Zhao, Shaofang Hong, Qunying Liao, Kar-Ping Shum (2007)

Czechoslovak Mathematical Journal

Let S = { x 1 , , x n } be a set of n distinct positive integers and e 1 an integer. Denote the n × n power GCD (resp. power LCM) matrix on S having the e -th power of the greatest common divisor ( x i , x j ) (resp. the e -th power of the least common multiple [ x i , x j ] ) as the ( i , j ) -entry of the matrix by ( ( x i , x j ) e ) (resp. ( [ x i , x j ] e ) ) . We call the set S an odd gcd closed (resp. odd lcm closed) set if every element in S is an odd number and ( x i , x j ) S (resp. [ x i , x j ] S ) for all 1 i , j n . In studying the divisibility of the power LCM and power GCD matrices, Hong conjectured in 2004 that...

On the equation ϕ ( | x m - y m | ) = 2 n

Florian Luca (2000)

Mathematica Bohemica

In this paper we investigate the solutions of the equation in the title, where φ is the Euler function. We first show that it suffices to find the solutions of the above equation when m = 4 and x and y are coprime positive integers. For this last equation, we show that aside from a few small solutions, all the others are in a one-to-one correspondence with the Fermat primes.

On the Euler function of repdigits

Florian Luca (2008)

Czechoslovak Mathematical Journal

For a positive integer n we write φ ( n ) for the Euler function of n . In this note, we show that if b > 1 is a fixed positive integer, then the equation φ x b n - 1 b - 1 = y b m - 1 b - 1 , where x , y { 1 , ... , b - 1 } , has only finitely many positive integer solutions ( x , y , m , n ) .

Currently displaying 81 – 100 of 135