On the extendibility of the Diophantine triple { 1 , 5 , c } . Abu Muriefah, Fadwa S., Al-Rashed, Amal (2004) International Journal of Mathematics and Mathematical Sciences
On the family of diophantine triples { k + 2 , 4 k , 9 k + 6 } . Filipin, Alan, Togbé, Alain (2009) Acta Mathematica Academiae Paedagogicae Nyí regyháziensis. New Series [electronic only]
On the family of Thue equations x³ - (n-1)x²y - (n+2)xy² - y³ = k M. Mignotte, A. Pethő, F. Lemmermeyer (1996) Acta Arithmetica
On the greatest prime factor of Markov pairs Pietro Corvaja, Umberto Zannier (2006) Rendiconti del Seminario Matematico della Università di Padova
On the number of solutions of simultaneous Pell equations II Michael A. Bennett, Mihai Cipu, Maurice Mignotte, Ryotaro Okazaki (2006) Acta Arithmetica
On the positive integral solutions of the Diophantine equation x 3 + b y + 1 - x y z = 0 . Luca, Florian, Togbé, Alain (2008) Bulletin of the Malaysian Mathematical Sciences Society. Second Series
On the powerful part of n 2 + 1 Jan-Christoph Puchta (2003) Archivum Mathematicum We show that n 2 + 1 is powerfull for O ( x 2 / 5 + ϵ ) integers n ≤ x at most, thus answering a question of P. Ribenboim.
On the Representation of Integers by Binary Cubic Forms of Positive Discriminant. J.-H. Evertse (1983) Inventiones mathematicae
On the representation of integers by binary cubic forms of positive discriminant (Erratum). J.H. Evertse (1984) Inventiones mathematicae
On the representation of integers by certain binary cubic and biquadratic forms W. Ljunggren (1971) Acta Arithmetica
On the resolution of simultaneous Pell equations. Szalay, László (2007) Annales Mathematicae et Informaticae
On the size of integer solutions of elliptic equations, II Yann Bugeaud (2000) Δελτίο της Ελληνικής Μαθηματικής Εταιρίας
On the System of Diophantine Equations X2 - 6y2 = -5 and x= 2z2 - 1. Maurice Mignotte, Attila Pethö (1995) Mathematica Scandinavica
On the torsion subgroups of elliptic curves over totally real fields. S. Kamienny (1986) Inventiones mathematicae
On two-parametric family of quartic Thue equations Borka Jadrijević (2005) Journal de Théorie des Nombres de Bordeaux We show that for all integers m and n there are no non-trivial solutions of Thue equation x 4 - 2 m n x 3 y + 2 m 2 - n 2 + 1 x 2 y 2 + 2 m n x y 3 + y 4 = 1 , satisfying the additional condition gcd ( x y , m n ) = 1 .