The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1 Next

Displaying 1 – 20 of 33

Showing per page

Distribution of values of Hecke characters of infinite order

C. S. Rajan (1998)

Acta Arithmetica

We show that the number of primes of a number field K of norm at most x, at which the local component of an idele class character of infinite order is principal, is bounded by O(x exp(-c√(log x))) as x → ∞, for some absolute constant c > 0 depending only on K.

Extension of Estermann’s theorem to Euler products associated to a multivariate polynomial

Ludovic Delabarre (2013)

Bulletin de la Société Mathématique de France

Given a multivariate polynomial h X 1 , , X n with integral coefficients verifying an hypothesis of analytic regularity (and satisfying h ( 0 ) = 1 ), we determine the maximal domain of meromorphy of the Euler product p prime h p - s 1 , , p - s n and the natural boundary is precisely described when it exists. In this way we extend a well known result for one variable polynomials due to Estermann from 1928. As an application, we calculate the natural boundary of the multivariate Euler products associated to a family of toric varieties.

Currently displaying 1 – 20 of 33

Page 1 Next