The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 7 of 7

Showing per page

Real hypersurfaces in complex two-plane Grassmannians with certain commuting condition

Hyunjin Lee, Seonhui Kim, Young Jin Suh (2012)

Czechoslovak Mathematical Journal

In this paper, first we introduce a new notion of commuting condition that φ φ 1 A = A φ 1 φ between the shape operator A and the structure tensors φ and φ 1 for real hypersurfaces in G 2 ( m + 2 ) . Suprisingly, real hypersurfaces of type ( A ) , that is, a tube over a totally geodesic G 2 ( m + 1 ) in complex two plane Grassmannians G 2 ( m + 2 ) satisfy this commuting condition. Next we consider a complete classification of Hopf hypersurfaces in G 2 ( m + 2 ) satisfying the commuting condition. Finally we get a characterization of Type ( A ) in terms of such commuting...

Representation fields for commutative orders

Luis Arenas-Carmona (2012)

Annales de l’institut Fourier

A representation field for a non-maximal order in a central simple algebra is a subfield of the spinor class field of maximal orders which determines the set of spinor genera of maximal orders containing a copy of . Not every non-maximal order has a representation field. In this work we prove that every commutative order has a representation field and give a formula for it. The main result is proved for central simple algebras over arbitrary global fields.

Roots of unity in definite quaternion orders

Luis Arenas-Carmona (2015)

Acta Arithmetica

A commutative order in a quaternion algebra is called selective if it embeds into some, but not all, of the maximal orders in the algebra. It is known that a given quadratic order over a number field can be selective in at most one indefinite quaternion algebra. Here we prove that the order generated by a cubic root of unity is selective for any definite quaternion algebra over the rationals with type number 3 or larger. The proof extends to a few other closely related orders.

Currently displaying 1 – 7 of 7

Page 1