Analytic functions and collapsing products.
Un algorithme est présenté pour calculer en toute généralité le « réseau de Levelt » pour un réseau donné.
We generalize and unify the proofs of several results on algebraic independence of arithmetic functions and Dirichlet series by using a theorem of Ax on the differential Schanuel conjecture. Along the way, we find counter-examples to some results in the literature.
We survey recent work on arithmetic analogues of ordinary and partial differential equations.
(1) Shepherdson proved that a discrete unitary commutative semi-ring A+ satisfies IE0 (induction scheme restricted to quantifier free formulas) iff A is integral part of a real closed field; and Berarducci asked about extensions of this criterion when exponentiation is added to the language of rings. Let T range over axiom systems for ordered fields with exponentiation; for three values of T we provide a theory in the language of rings plus exponentiation such that the ...