How many algebraic (finite) extensions over the rationals.
The tropical semifield, i.e., the real numbers enhanced by the operations of addition and maximum, serves as a base of tropical mathematics. Addition is an abelian group operation, whereas the maximum defines an idempotent semigroup structure. We address the question of the geometry of idempotent semigroups, in particular, tropical algebraic sets carrying the structure of a commutative idempotent semigroup. We show that commutative idempotent semigroups are contractible, that systems of tropical...
The paper presents a careful analysis of the Cantor-Zassenhaus polynomial factorization algorithm, thus obtaining tight bounds on the performances, and proposing useful improvements. In particular, a new simplified version of this algorithm is described, which entails a lower computational cost. The key point is to use linear test polynomials, which not only reduce the computational burden, but can also provide good estimates and deterministic bounds of the number of operations needed for factoring....
Nous désirons savoir si l’opérateur différentiel d’ordre , où est une matrice à coefficients rationnels, a un indice dans l’espace des fonctions analytiques dans une boule; dans le cas où cet indice existe nous voulons aussi le calculer. Dans le cas où nous montrons l’existence d’un indice (si l’exposant de l’opérateur n’est pas Liouville -adique) et nous montrons comment calculer cet indice. De même nous savons montrer l’existence d’un indice et comment calculer cet indice lorsque le système...