On Rolle's theorem for polynomials over the complex numbers.
2000 Mathematics Subject Classification: 12D10.We show that for n = 4 they are realizable either by hyperbolic polynomials of degree 4 or by non-hyperbolic polynomials of degree 6 whose fourth derivatives never vanish (these are a particular case of the so-called hyperbolic polynomial-like functions of degree 4).
Some results and problems that arise in connection with the foundations of the theory of ruled and rational field extensions are discussed.
The article is a survey on problem of the theorem of Hurwitz. The starting point of explanations is Schur's decomposition theorem for polynomials. It is showed how to obtain the well-known criteria on the distribution of roots of polynomials. The theorem on uniqueness of constants in Schur's decomposition seems to be new.
In this paper, we introduce the notion of ternary semi-integral domain and ternary semifield and study some of their properties.In particular we also investigate the maximal ideals of the ternary semiring Z¯₀.