A theorem on normal flatness
This paper discusses a variant theory for the Gorenstein flat dimension. Actually, since it is not yet known whether the category (R) of Gorenstein flat modules over a ring R is projectively resolving or not, it appears legitimate to seek alternate ways of measuring the Gorenstein flat dimension of modules which coincide with the usual one in the case where (R) is projectively resolving, on the one hand, and present nice behavior for an arbitrary ring R, on the other. In this paper, we introduce...
Torsion-free covers are considered for objects in the category Objects in the category are just maps in -Mod. For we find necessary and sufficient conditions for the coGalois group associated to a torsion-free cover, to be trivial for an object in Our results generalize those of E. Enochs and J. Rado for abelian groups.
In this article we characterize those abelian groups for which the coGalois group (associated to a torsion free cover) is equal to the identity.
In this paper, we are concerned with G-rings. We generalize the Kaplansky’s theorem to rings with zero-divisors. Also, we assert that if is a ring extension such that for some regular element of , then is a G-ring if and only if so is . Also, we examine the transfer of the G-ring property to trivial ring extensions. Finally, we conclude the paper with illustrative examples discussing the utility and limits of our results.