The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 221 – 240 of 253

Showing per page

Torsion Part of ℤ-module

Yuichi Futa, Hiroyuki Okazaki, Yasunari Shidama (2015)

Formalized Mathematics

In this article, we formalize in Mizar [7] the definition of “torsion part” of ℤ-module and its properties. We show ℤ-module generated by the field of rational numbers as an example of torsion-free non free ℤ-modules. We also formalize the rank-nullity theorem over finite-rank free ℤ-modules (previously formalized in [1]). ℤ-module is necessary for lattice problems, LLL (Lenstra, Lenstra and Lovász) base reduction algorithm [23] and cryptographic systems with lattices [24].

Torsion Z-module and Torsion-free Z-module

Yuichi Futa, Hiroyuki Okazaki, Kazuhisa Nakasho, Yasunari Shidama (2014)

Formalized Mathematics

In this article, we formalize a torsion Z-module and a torsionfree Z-module. Especially, we prove formally that finitely generated torsion-free Z-modules are finite rank free. We also formalize properties related to rank of finite rank free Z-modules. The notion of Z-module is necessary for solving lattice problems, LLL (Lenstra, Lenstra, and Lov´asz) base reduction algorithm [20], cryptographic systems with lattice [21], and coding theory [11].

Totally indefinite Euclidean quaternion fields

Jean-Paul Cerri, Jérôme Chaubert, Pierre Lezowski (2014)

Acta Arithmetica

We study the Euclidean property for totally indefinite quaternion fields. In particular, we establish a complete list of norm-Euclidean such fields over imaginary quadratic number fields. This enables us to exhibit an example which gives a negative answer to a question asked by Eichler. The proofs are both theoretical and algorithmic.

Towards a theory of Bass numbers with application to Gorenstein algebras

Shiro Goto, Kenji Nishida (2002)

Colloquium Mathematicae

The notion of Gorenstein rings in the commutative ring theory is generalized to that of Noetherian algebras which are not necessarily commutative. We faithfully follow in the steps of the commutative case: Gorenstein algebras will be defined using the notion of Cousin complexes developed by R. Y. Sharp [Sh1]. One of the goals of the present paper is the characterization of Gorenstein algebras in terms of Bass numbers. The commutative theory of Bass numbers turns out to carry over with no extra changes....

Towards the automated synthesis of a Gröbner bases algorithm.

Bruno Buchberger (2004)

RACSAM

We discuss the question of whether the central result of algorithmic Gröbner bases theory, namely the notion of S?polynomials together with the algorithm for constructing Gröbner bases using S?polynomials, can be obtained by ?artificial intelligence?, i.e. a systematic (algorithmic) algorithm synthesis method. We present the ?lazy thinking? method for theorem and algorithm invention and apply it to the ?critical pair / completion? algorithm scheme. We present a road map that demonstrates that, with...

Currently displaying 221 – 240 of 253