Direct Limits of Power Series Rings.
In a recent paper (Diversity in Monoids, Czech. Math. J. 62 (2012), 795–809), the last two authors introduced and developed the monoid invariant “diversity” and related properties “homogeneity” and “strong homogeneity”. We investigate these properties within the context of inside factorial monoids, in which the diversity of an element counts the number of its different almost primary components. Inside factorial monoids are characterized via diversity and strong homogeneity. A new invariant complementary...
Let be a (commutative cancellative) monoid. A nonunit element is called almost primary if for all , implies that there exists such that or . We introduce a new monoid invariant, diversity, which generalizes this almost primary property. This invariant is developed and contextualized with other monoid invariants. It naturally leads to two additional properties (homogeneity and strong homogeneity) that measure how far an almost primary element is from being primary. Finally, as an application...
In this article, we formalize the definition of divisible ℤ-module and its properties in the Mizar system [3]. We formally prove that any non-trivial divisible ℤ-modules are not finitely-generated.We introduce a divisible ℤ-module, equivalent to a vector space of a torsion-free ℤ-module with a coefficient ring ℚ. ℤ-modules are important for lattice problems, LLL (Lenstra, Lenstra and Lovász) base reduction algorithm [15], cryptographic systems with lattices [16] and coding theory [8].
We consider subrings A of the ring of formal power series. They are defined by growth conditions on coefficients such as, for instance, Gevrey conditions. We prove a Weierstrass-Hironaka division theorem for such subrings. Moreover, given an ideal ℐ of A and a series f in A we prove the existence in A of a unique remainder r modulo ℐ. As a consequence, we get a new proof of the noetherianity of A.
Ce travail est une étude analytique locale de l’anneau des séries de Dirichlet convergentes. Dans un premier temps, on établit des propriétés arithmétiques de cet anneau ; on prouve en particulier sa factorialité, que l’on déduit de théorèmes de division du type Weierstrass. Ensuite, on s’intéresse à des problèmes de composition. Soient et des séries de Dirichlet convergentes. On sait que avec est encore une série de Dirichlet convergente. On étudie la réciproque : sous les hypothèses que...