Higher Kodaira-Spencer classes.
Higher Auslander algebras were introduced by Iyama generalizing classical concepts from representation theory of finite-dimensional algebras. Recently these higher analogues of classical representation theory have been increasingly studied. Cyclic polytopes are classical objects of study in convex geometry. In particular, their triangulations have been studied with a view towards generalizing the rich combinatorial structure of triangulations of polygons. In this paper, we demonstrate a connection...
We compute the Hilbert series of the complex Grassmannian using invariant theoretic methods. This is made possible by showing that the denominator of the -Hilbert series is a Vandermonde-like determinant. We show that the -polynomial of the Grassmannian coincides with the -Narayana polynomial. A simplified formula for the -polynomial of Schubert varieties is given. Finally, we use a generalized hypergeometric Euler transform to find simplified formulae for the -Narayana numbers, i.e. the -polynomial...
Lo scopo di questo lavoro è la descrizione di alcune nuove tecniche per calcolare serie di Hilbert-Poincaré (HP-serie) di algebre standard, che possono essere viste come sottoalgebre di algebre bigraduate. In particolare mostriamo come calcolare in modo uniforme le HP-serie delle potenze di un idele omogeneo. Mostriamo anche come calcolare le HP-serie di prodotti di Segre e di alcune algebre di Blow-up, che sono di interesse in Geometria Algebrica. Per alcune classi siamo in grado di descrivere...