Displaying 241 – 260 of 356

Showing per page

Dimension algébrique de sous-groupes analytiques de variétés de groupe

Michel Waldschmidt (1975)

Annales de l'institut Fourier

Soient G une variété de groupe définie sur le corps Q des nombres algébriques, et φ : C n G C un sous-groupe à n paramètres de G , de dimension algébrique d . Nous nous proposons de majorer le rang (sur Z ) des sous-groupes Γ de C n dont l’image par φ est contenue dans le groupe G Q des points algébriques de G .E. Bombieri et S. Lang ont déjà obtenu de telles majorations, en supposant que les points de Γ sont très bien distribués : pour d n + 1 , on a n 2 + 3 n pour des variétés linéaires, et 2 n 2 + 4 n pour des variétés abéliennes .Nous...

Dimers and cluster integrable systems

Alexander B. Goncharov, Richard Kenyon (2013)

Annales scientifiques de l'École Normale Supérieure

We show that the dimer model on a bipartite graph Γ on a torus gives rise to a quantum integrable system of special type, which we call acluster integrable system. The phase space of the classical system contains, as an open dense subset, the moduli space Ł Γ of line bundles with connections on the graph Γ . The sum of Hamiltonians is essentially the partition function of the dimer model. We say that two such graphs Γ 1 and Γ 2 areequivalentif the Newton polygons of the corresponding partition functions...

Diophantine approximation on algebraic varieties

Michael Nakamaye (1999)

Journal de théorie des nombres de Bordeaux

We present an overview of recent advances in diophantine approximation. Beginning with Roth's theorem, we discuss the Mordell conjecture and then pass on to recent higher dimensional results due to Faltings-Wustholz and to Faltings respectively.

Currently displaying 241 – 260 of 356