Examples of liftings of surfaces and a problem in de Rham cohomology
In this article we prove the conjecture claiming that the motive of a real quadric is the “most decomposable” among anisotropic quadrics of given dimension over all fields. This imposes severe restrictions on the motive of arbitrary anisotropic quadric. As a corollary we estimate from below the rank of indecomposable direct summand in the motive of a quadric in terms of its dimension. This generalizes the well-known Binary Motive Theorem. Moreover, we have the description of the Tate motives involved....
We introduce a new construction of exceptional objects in the derived category of coherent sheaves on a compact homogeneous space of a semisimple algebraic group and show that it produces exceptional collections of the length equal to the rank of the Grothendieck group on homogeneous spaces of all classical groups.
We consider singular -acyclic surfaces with smooth locus of non-general type. We prove that if the singularities are topologically rational then the smooth locus is - or -ruled or the surface is up to isomorphism one of two exceptional surfaces of Kodaira dimension zero. For both exceptional surfaces the Kodaira dimension of the smooth locus is zero and the singular locus consists of a unique point of type and respectively.
Soit un isocristal devecteur de Newton. On associe à une filtration de sonvecteur de Hodge. Si estadmissible (i.e. est faiblement admissible en tant qu’isocristal filtré), alors . Réciproquement, on démontre qu’étant donné avec , il existe une filtration admissible de avec . On en déduit, à l’aide d’un théorème de Laffaille, l’existence d’un réseau dans de type . On donne aussi une variante pour un groupe quasi-déployé quelconque.
We show that the moduli space of coherent systems of rank two and dimension four on a generic curve of genus at least two is non-empty for any value of the parameter when the Brill-Noether number is at least one and the degree is odd or when the Brill-Noether number is at least ve and the degree is even. In all these cases there is one component of the moduli space of coherent systems of the expected dimension. The case of rank two and dimension four is particularly relevant as it is the rst case...