On projective manifolds with nef anticanonical bundles.
It is known that generators of ideals defining projective toric varieties of dimension embedded by global sections of normally generated line bundles have degree at most . We characterize projective toric varieties of dimension whose defining ideals must have elements of degree as generators.
The purpose of this paper is to define a new numerical invariant of valuations centered in a regular two-dimensional regular local ring. For this, we define a sequence of non-negative rational numbers δν = {δν(j)}j ≥ 0 which is determined by the proximity relations of the successive quadratic transformations at the points determined by a valuation ν. This sequence is characterized by seven combinatorial properties, so that any sequence of non-negative rational numbers having the above properties...
We consider a smooth projective variety on which a simple algebraic group acts with an open orbit. We discuss a theorem of Brion-Luna-Vust in order to relate the action of with the induced action of on the normal bundle of a closed orbit of the action. We get effective results in case and .
Let X be a smooth algebraic hypersurface in ℂⁿ. There is a proper polynomial mapping F: ℂⁿ → ℂⁿ, such that the set of ramification values of F contains the hypersurface X.
The classical Segre theory gives a necessary and sufficient condition for a plane curve to be a branch curve of a (generic) projection of a smooth surface in . We generalize this result for smooth surfaces in a projective space of any dimension in the following way: given two plane curves, and , we give a necessary and sufficient condition for to be the branch curve of a surface in and to be the image of the double curve of a -model of . In the classical Segre theory, a plane curve...
Sia una curva irriducibile nodale di genere aritmetico . In queste note vogliamo mostrare come il sistema lineare delle quadriche, contenenti un opportuno modello proiettivo della curva, permette di descrivere i fibrati vettoriali semistabili, di rango , su .
T. Dokchitser [Acta Arith. 126 (2007)] showed that given an elliptic curve E defined over a number field K then there are infinitely many degree 3 extensions L/K for which the rank of E(L) is larger than E(K). In the present paper we show that the same is true if we replace 3 by any prime number. This result follows from a more general result establishing a similar property for the Jacobian varieties associated with curves defined by an equation of the shape f(y) = g(x) where f and g are polynomials...