Displaying 661 – 680 of 921

Showing per page

An Algebraic Formula for the Index of a Vector Field on an Isolated Complete Intersection Singularity

H.-Ch. Graf von Bothmer, Wolfgang Ebeling, Xavier Gómez-Mont (2008)

Annales de l’institut Fourier

Let ( V , 0 ) be a germ of a complete intersection variety in n + k , n > 0 , having an isolated singularity at 0 and X be the germ of a holomorphic vector field having an isolated zero at 0 and tangent to V . We show that in this case the homological index and the GSV-index coincide. In the case when the zero of X is also isolated in the ambient space n + k we give a formula for the homological index in terms of local linear algebra.

An alternative description of the Drinfeld p -adic half-plane

Stephen Kudla, Michael Rapoport (2014)

Annales de l’institut Fourier

We show that the Deligne formal model of the Drinfeld p -adic half-plane relative to a local field F represents a moduli problem of polarized O F -modules with an action of the ring of integers in a quadratic extension E of F . The proof proceeds by establishing a comparison isomorphism with the Drinfeld moduli problem. This isomorphism reflects the accidental isomorphism of SL 2 ( F ) and SU ( C ) ( F ) for a two-dimensional split hermitian space C for E / F .

An alternative way to classify some Generalized Elliptic Curves and their isotopic loops

Lucien Bénéteau, M. Abou Hashish (2004)

Commentationes Mathematicae Universitatis Carolinae

The Generalized Elliptic Curves ( GECs ) are pairs ( Q , T ) , where T is a family of triples ( x , y , z ) of “points” from the set Q characterized by equalities of the form x . y = z , where the law x . y makes Q into a totally symmetric quasigroup. Isotopic loops arise by setting x * y = u . ( x . y ) . When ( x . y ) . ( a . b ) = ( x . a ) . ( y . b ) , identically ( Q , T ) is an entropic GEC and ( Q , * ) is an abelian group. Similarly, a terentropic GEC may be characterized by x 2 . ( a . b ) = ( x . a ) ( x . b ) and ( Q , * ) is then a Commutative Moufang Loop ( CML ) . If in addition x 2 = x , we have Hall GECs and ( Q , * ) is an exponent 3

An annihilator for the p -Selmer group by means of Heegner points

Massimo Bertolini (1994)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Let E / Q be a modular elliptic curve, and let K be an imaginary quadratic field. We show that the p -Selmer group of E over certain finite anticyclotomic extensions of K , modulo the universal norms, is annihilated by the «characteristic ideal» of the universal norms modulo the Heegner points. We also extend this result to the anticyclotomic Z p -extension of K . This refines in the current contest a result of [1].

Currently displaying 661 – 680 of 921