An Algebraic Approach to the Residues in Algebraic Geometry.
Let be a germ of a complete intersection variety in , , having an isolated singularity at and be the germ of a holomorphic vector field having an isolated zero at and tangent to . We show that in this case the homological index and the GSV-index coincide. In the case when the zero of is also isolated in the ambient space we give a formula for the homological index in terms of local linear algebra.
We show that the Deligne formal model of the Drinfeld -adic half-plane relative to a local field represents a moduli problem of polarized -modules with an action of the ring of integers in a quadratic extension of . The proof proceeds by establishing a comparison isomorphism with the Drinfeld moduli problem. This isomorphism reflects the accidental isomorphism of and for a two-dimensional split hermitian space for .
The Generalized Elliptic Curves are pairs , where is a family of triples of “points” from the set characterized by equalities of the form , where the law makes into a totally symmetric quasigroup. Isotopic loops arise by setting . When , identically is an entropic and is an abelian group. Similarly, a terentropic may be characterized by and is then a Commutative Moufang Loop . If in addition , we have Hall and is an exponent
Let be a modular elliptic curve, and let be an imaginary quadratic field. We show that the -Selmer group of over certain finite anticyclotomic extensions of , modulo the universal norms, is annihilated by the «characteristic ideal» of the universal norms modulo the Heegner points. We also extend this result to the anticyclotomic -extension of . This refines in the current contest a result of [1].