Displaying 701 – 720 of 915

Showing per page

Theta height and Faltings height

Fabien Pazuki (2012)

Bulletin de la Société Mathématique de France

Using original ideas from J.-B. Bost and S. David, we provide an explicit comparison between the Theta height and the stable Faltings height of a principally polarized Abelian variety. We also give as an application an explicit upper bound on the number of K -rational points of a curve of genus g 2 under a conjecture of S. Lang and J. Silverman. We complete the study with a comparison between differential lattice structures.

Theta loci and deformation theory

Claudio Fontanari (2002)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

We investigate deformation-theoretical properties of curves carrying a half-canonical linear series of fixed dimension. In particular, we improve the previously known bound on the dimension of the corresponding loci in the moduli space and we obtain a natural description of the tangent space to higher theta loci.

Thetanullwerte: from periods to good equations.

Jordi Guàrdia (2007)

Publicacions Matemàtiques

We will show the utility of the classical Jacobi Thetanullwerte for the description of certain period lattices of elliptic curves, providing equations with good arithmetical properties. These equations will be the starting point for the construction of families of elliptic curves with everywhere good reduction.[Proceedings of the Primeras Jornadas de Teoría de Números (Vilanova i la Geltrú (Barcelona), 30 June - 2 July 2005)].

Thom polynomials and Schur functions: the singularities I 2 , 2 ( - )

Piotr Pragacz (2007)

Annales de l’institut Fourier

We give the Thom polynomials for the singularities I 2 , 2 associated with maps ( , 0 ) ( + k , 0 ) with parameter k 0 . Our computations combine the characterization of Thom polynomials via the “method of restriction equations” of Rimanyi et al. with the techniques of Schur functions.

Thom polynomials and Schur functions: the singularities I I I 2 , 3 ( - )

Özer Öztürk (2010)

Annales Polonici Mathematici

We give a closed formula for the Thom polynomials of the singularities I I I 2 , 3 ( - ) in terms of Schur functions. Our computations combine the characterization of the Thom polynomials via the “method of restriction equations” of Rimányi et al. with the techniques of Schur functions.

Currently displaying 701 – 720 of 915