The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Previous Page 2

Displaying 21 – 39 of 39

Showing per page

Complementi di sottospazi e singolarità coniche

Claudio Procesi (1996)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Discuterò una costruzione geometrica, fatta insieme a De Concini, di una modificazione di una configurazione di sottospazi che trasforma i sottospazi in un divisore a incroci normali. Inoltre nel caso di iperpiani questa costruzione è legata alla generalizzazione della equazione di Kniznik-Zamolodchikov ed alla teoria dei nodi, per i sistemi di radici produce dei modelli particolarmente interessati.

Computing limit linear series with infinitesimal methods

Laurent Evain (2007)

Annales de l’institut Fourier

Alexander and Hirschowitz determined the Hilbert function of a generic union of fat points in a projective space when the number of fat points is much bigger than the greatest multiplicity of the fat points. Their method is based on a lemma which determines the limit of a linear system depending on fat points approaching a divisor.Other Hilbert functions were computed previously by Nagata. In connection with his counter-example to Hilbert’s fourteenth problem, Nagata determined the Hilbert function...

Curves in P2(C) with 1-dimensional symmetry.

A. A. du Plessis, Charles Terence Clegg Wall (1999)

Revista Matemática Complutense

In a previous paper we showed that the existence of a 1-parameter symmetry group of a hypersurface X in projective space was equivalent to failure of versality of a certain unfolding. Here we study in detail (reduced) plane curves of degree d ≥ 3, excluding the trivial case of cones. We enumerate all possible group actions -these have to be either semisimple or unipotent- for any degree d. A 2-parameter group can only occur if d = 3. Explicit lists of singularities of the corresponding curves are...

Cycle exceptionnel de l’éclatement d’un idéal définissant l’origine de C n et applications

Alain Hénaut (1987)

Annales de l'institut Fourier

Soit I un idéal de C { z 1 , ... , z n } définissant l’origine de C n . On donne une méthode explicite pour déterminer, après un choix convenable des générateurs de I = ( f 1 , ... , f n + p ) , le cycle de P n + p - 1 sous-jacent à la fibre exceptionnelle de l’éclatement de C n relativement à I . On étudie également l’éclatement d’une famille équimultiple d’idéaux ponctuels paramétrée par un germe d’espace analytique complexe réduit.

Cycles évanescents d’une fonction de Liouville de type f 1 λ 1 . . . f p λ p

Emmanuel Paul (1995)

Annales de l'institut Fourier

On construit un transport transverse aux fibres d’une fonction multivaluée de type f 1 λ 1 ... f p λ p ( λ i complexes), à l’origine de 2 . Ce transport est unique à isotopie près. On en déduit l’existence de voisinages réguliers dans lesquels les fibres sont toutes C difféomorphes (voire dans un cas quasi-homogène, analytiquement difféomorphes). On obtient également une généralisation de la notion de monodromie. On calcule enfin l’homologie évanescente de la fibre-type, en précisant le gradué qui lui est associé.

Cyclic coverings of Fano threefolds

Sławomir Cynk (2003)

Annales Polonici Mathematici

We describe a series of Calabi-Yau manifolds which are cyclic coverings of a Fano 3-fold branched along a smooth divisor. For all the examples we compute the Euler characteristic and the Hodge numbers. All examples have small Picard number ϱ = h 1 , 1 .

Currently displaying 21 – 39 of 39

Previous Page 2