The search session has expired. Please query the service again.
Displaying 3121 –
3140 of
3997
We investigate the structures of Hopf -algebra on the Radford algebras over . All the -structures on are explicitly given. Moreover, these Hopf -algebra structures are classified up to equivalence.
In this paper, we prove that unit ideal-stable range condition is right and left symmetric.
Like the classical Gram-Schmidt theorem for symplectic vector spaces, the sheaf-theoretic version (in which the coefficient algebra sheaf is appropriately chosen) shows that symplectic -morphisms on free -modules of finite rank, defined on a topological space , induce canonical bases (Theorem 1.1), called symplectic bases. Moreover (Theorem 2.1), if is an -module (with respect to a -algebra sheaf without zero divisors) equipped with an orthosymmetric -morphism, we show, like in the classical...
We consider all the non-metabelian groups of order that have exponent either or and deduce the unit group of semisimple group algebra . Here, denotes the power of a prime, i.e., for prime and a positive integer . Up to isomorphism, there are groups of order that have exponent either or . Additionally, we also discuss how to simply obtain the unit groups of the semisimple group algebras of those non-metabelian groups of order that are a direct product of two nontrivial...
A ring Λ satisfies the Generalized Auslander-Reiten Condition ( ) if for each Λ-module M with for all i > n the projective dimension of M is at most n. We prove that this condition is satisfied by all n-symmetric algebras of quasitilted type.
2000 Mathematics Subject Classification: Primary: 17A32; Secondary: 16R10, 16P99,
17B01, 17B30, 20C30Let F be a field of characteristic zero. In this paper we study
the variety of Leibniz algebras 3N determined by the identity x(y(zt)) ≡ 0.
The algebras of this variety are left nilpotent of class not more than 3. We
give a complete description of the vector space of multilinear identities in
the language of representation theory of the symmetric group Sn
and Young
diagrams. We also show that the...
The Wells map relates automorphisms with cohomology in the setting of extensions of groups and Lie algebras. We construct the Wells map for some abelian extensions of 3-Lie algebras to obtain obstruction classes in for a pair of automorphisms in to be inducible from an automorphism of . Application to free nilpotent 3-Lie algebras is discussed.
In this note we show that there are no ring anti-isomorphism between row finite matrix rings. As a consequence we show that row finite and column finite matrix rings cannot be either isomorphic or Morita equivalent rings. We also show that antiisomorphisms between endomorphism rings of infinitely generated projective modules may exist.
Currently displaying 3121 –
3140 of
3997